Overview

- Announcements / Administrative
- Review
- Evaluation of Hypotheses / Statistical Methods
- Summary
Announcements / Administrative

• Interim scores emailed
• Some emails not available
• Please email to bapa.rao at gmail dot com
• Still To Come:
 – guidelines for project spec documentation
 – Evaluation for core material
Review

• Decision trees
• Entropy, information gain
• Overfitting
• Tree pruning, hypothesis pruning
 – How to evaluate a good pruning?
Evaluation of Hypotheses / Statistical Methods

• Given observed accuracy of a hypothesis over a limited sample of data, how well does this estimate accuracy over additional examples?
• Given that one hypothesis is more accurate than another over some random sample, what is the probability that it is more accurate in general?
• When data is limited, what is the best way to use the data to learn a hypothesis as well as to estimate accuracy?
Two Definitions of Error

The true error of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

How well does $error_S(h)$ estimate $error_{\mathcal{D}}(h)$?
Problems Estimating Error

1. **Bias**: If S is training set, $error_S(h)$ is optimistically biased

 \[bias \equiv E[error_S(h)] - error_D(h) \]

 For unbiased estimate, h and S must be chosen independently

2. **Variance**: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$
Example

Hypothesis h misclassifies 12 of the 40 examples in S

$$error_S(h) = \frac{12}{40} = .30$$

What is $error_D(h)$?
Estimators

Experiment:

1. choose sample S of size n according to distribution D

2. measure $error_S(h)$

$error_S(h)$ is a random variable (i.e., result of an experiment)

$error_S(h)$ is an unbiased estimator for $error_D(h)$

Given observed $error_S(h)$ what can we conclude about $error_D(h)$?
Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately 95% probability, $\text{error}_D(h)$ lies in interval

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$
Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately $N\%$ probability, $error_D(h)$ lies in interval

$$error_S(h) \pm z_N \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

where

<table>
<thead>
<tr>
<th>$N%$:</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_N:</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Why should we believe this?
error_S(h) is a Random Variable

Rerun the experiment with different randomly drawn S (of size n)

Probability of observing r misclassified examples:

\[P(r) = \frac{n!}{r!(n-r)!} \text{error}_S(h)^r (1 - \text{error}_D(h))^{n-r} \]
Binomial Probability Distribution

\[P(r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r} \]

Probability \(P(r) \) of \(r \) heads in \(n \) coin flips, if \(p = \Pr(\text{heads}) \)

- Expected, or mean value of \(X \), \(E[X] \), is
 \[E[X] \equiv \sum_{i=0}^{n} i P(i) = np \]

- Variance of \(X \) is
 \[Var(X) \equiv E[(X - E[X])^2] = np(1-p) \]

- Standard deviation of \(X \), \(\sigma_X \), is
 \[\sigma_X \equiv \sqrt{E[(X - E[X])^2]} = \sqrt{np(1-p)} \]
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>[TRUE](p(\text{head}) = ?)</th>
<th>[TRUE](p(\text{misclassify (h)}) = ?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANDOM VARY</td>
<td>No. of heads observed out of (n) tosses, each toss is independent of another</td>
<td>No. of misclassifications out of (n) random sample data items, each data item is independent of another</td>
</tr>
<tr>
<td>BASE EXPERIMENT</td>
<td>1 coin toss to see if heads comes up</td>
<td>Determine if a random data instance is misclassified</td>
</tr>
<tr>
<td>EVENT</td>
<td>Come up heads</td>
<td>Misclassify data item</td>
</tr>
<tr>
<td>SAMPLE SIZE / MULTIPLE TRIALS</td>
<td>(n) independent coin tosses</td>
<td>Random Sample data set of size (n)</td>
</tr>
<tr>
<td>SAMPLE FREQUENCY MEASURED</td>
<td>(r/n)</td>
<td>(r/n)</td>
</tr>
</tbody>
</table>
Why Binomial Distribution Works

• Y is estimator
 – Frequency count \(r/n \)
• \(p \) is true probability of misclassification

• Estimation Bias
 – \(E[Y] - p \)
 – NOT INDUCTIVE BIAS
• For binomial distribution
 – \(E[r] = np \)
 – \(E[r/n] = p \)
 – Convergence
• So, our estimator is unbiased
 – Needs to be truly random
 – Still have to worry about variance
• Normal distribution would be nicer
 – Easier to work with
Normal Distribution Approximates Binomial

\(\text{errors}_S(h) \) follows a \textit{Binomial} distribution, with

- mean \(\mu_{\text{errors}_S(h)} = \text{error}_D(h) \)
- standard deviation \(\sigma_{\text{errors}_S(h)} \)

\[
\sigma_{\text{errors}_S(h)} = \sqrt{\frac{\text{error}_D(h)(1 - \text{error}_D(h))}{n}}
\]

Approximate this by a \textit{Normal} distribution with

- mean \(\mu_{\text{errors}_S(h)} = \text{error}_D(h) \)
- standard deviation \(\sigma_{\text{errors}_S(h)} \)

\[
\sigma_{\text{errors}_S(h)} \approx \sqrt{\frac{\text{errors}_S(h)(1 - \text{errors}_S(h))}{n}}
\]
Normal Probability Distribution

\[p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2} \]

The probability that \(X \) will fall into the interval \((a, b)\) is given by

\[\int_a^b p(x) \, dx \]

- Expected, or mean value of \(X \), \(E[X] \), is
 \[E[X] = \mu \]

- Variance of \(X \) is
 \[Var(X) = \sigma^2 \]

- Standard deviation of \(X \), \(\sigma_X \), is
 \[\sigma_X = \sigma \]
Normal Probability Distribution

80% of area (probability) lies in $\mu \pm 1.28\sigma$

N% of area (probability) lies in $\mu \pm z_N \sigma$

<table>
<thead>
<tr>
<th>$N%$</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_N</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Confidence Intervals, More Correctly

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately 95% probability, $error_S(h)$ lies in interval

$$error_D(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

equivalently, $error_D(h)$ lies in interval

$$error_S(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

which is approximately

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$
Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1 \ldots Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2. Define the sample mean,

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Central Limit Theorem. As $n \to \infty$, the distribution governing \bar{Y} approaches a Normal distribution, with mean μ and variance $\frac{\sigma^2}{n}$.
Calculating Confidence Intervals

1. Pick parameter p to estimate
 - $\text{error}_D(h)$

2. Choose an estimator
 - $\text{error}_S(h)$

3. Determine probability distribution that governs estimator
 - $\text{error}_S(h)$ governed by Binomial distribution, approximated by Normal when $n \geq 30$

4. Find interval (L, U) such that N% of probability mass falls in the interval
 - Use table of z_N values
Difference Between Hypotheses

Test \(h_1 \) on sample \(S_1 \), test \(h_2 \) on \(S_2 \)

1. Pick parameter to estimate

\[
d \equiv \text{error}_D(h_1) - \text{error}_D(h_2)
\]

2. Choose an estimator

\[
\hat{d} \equiv \text{error}_{S_1}(h_1) - \text{error}_{S_2}(h_2)
\]

3. Determine probability distribution that governs estimator

\[
\sigma_d \approx \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}
\]

4. Find interval \((L, U) \) such that \(N\% \) of probability mass falls in the interval

\[
\hat{d} \pm z_N \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}^{(h2)}
\]
Paired t test to compare h_A, h_B

1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do

 $$\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$$

3. Return the value δ, where

 $$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

$N\%$ confidence interval estimate for d:

$$\bar{\delta} \pm t_{N,k-1} \ s_\delta$$

$$s_\delta \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \bar{\delta})^2}$$

Note δ_i approximately Normally distributed
Comparing learning algorithms L_A and L_B

What we’d like to estimate:

$$E_{S \in \mathcal{D}}[\text{error}_{\mathcal{D}}(L_A(S)) - \text{error}_{\mathcal{D}}(L_B(S))]$$

where $L(S)$ is the hypothesis output by learner L using training set S

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B, when trained using randomly selected training sets S drawn according to distribution \mathcal{D}.

But, given limited data D_0, what is a good estimator?

- could partition D_0 into training set S and training set T_0, and measure
 $$\text{error}_{T_0}(L_A(S_0)) - \text{error}_{T_0}(L_B(S_0))$$

- even better, repeat this many times and average the results (next slide)
Comparing learning algorithms L_A and L_B

1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do

 use T_i for the test set, and the remaining data for training set S_i

 - $S_i \leftarrow \{D_0 − T_i\}$
 - $h_A \leftarrow L_A(S_i)$
 - $h_B \leftarrow L_B(S_i)$
 - $\delta_i \leftarrow error_{T_i}(h_A) − error_{T_i}(h_B)$

3. Return the value $\bar{\delta}$, where

 $$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$
Comparing learning algorithms L_A and L_B

Notice we’d like to use the paired t test on $\bar{\delta}$ to obtain a confidence interval

but not really correct, because the training sets in this algorithm are not independent (they overlap!)

more correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_D(L_A(S)) - error_D(L_B(S))]$$

instead of

$$E_{S \subset D}[error_D(L_A(S)) - error_D(L_B(S))]$$

but even this approximation is better than no comparison
Summary

• How to estimate errors
• Binomial distribution
• Normal distribution
• How to compare algorithms
• True vs. estimated errors
• What to do about limited data