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Abstract

Conventional noncooperative game theory hypothesizes that the joint
(mixed) strategy of a set of reasoning players in a game will necessarily
satisfy an “equilibrium concept”. All other joint strategies are considered
impossible. Moroever, often the number of joint strategies satisfying that
equilibrium concept has measure zero. (Indeed, this is often considered a
desirable property of an equilibrium concept.) Under this hypothesis the
only issue is what equilibrium concept is “correct”.

This hypothesis violates the first-principles arguments underlying prob-
ability theory. Indeed, probability theory renders moot the controversy
over what equilibrium concept is correct — while in general there are joint
(mixed) strategies with zero probability, in general the set {strategies with
non-zero probability} has measure greater than zero. Rather than a first-
principles derivation of an equilibrium concept, game theory requires a
first-principles derivation of a distribution over joint strategies.

However say one wishes to predict a single joint strategy from that
distribution. Then decision theory tells us to first specify a loss func-
tion, a function which concerns how we, the analyst/scientist external to
the game, will use that prediction. We then predict that the game will
result in the joint strategy that is Bayes-optimal for that loss function
and distribution over joint strategies. Different loss functions — different
uses of the prediction — give different such optimal predictions. There
is no more role for an “equilibrium concept” that is independent of the
distribution and choice of loss function. This application of probability
theory to games, not just within games, is called Predictive Game Theory
(PGT).

This paper shows how information theory provides a first-principles
argument for how to set a distribution over joint strategies. The con-
nection of this distribution to the bounded rational Quantal Response
Equilibrium (QRE) is elaborated. In particular, taking the QRE to be
an approximation to the mode of the distribution, correction terms to the
QRE are derived. In addition, some Nash equilibria are not approached
by any limiting sequence of increasingly rational QRE joint strategies.
However it is shown here that every Nash equilibrium is approached with
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a limiting sequence of joint strategies all of which have non-zero probabil-
ity. (In general though not all strategies in those sequences are modes of
the associated distributions over joint strategies.)

It is also shown that in many games, having a probability distribution
with support restricted to Nash equilibria — as stipulated by conven-
tional game theory — is impossible. So the external analyst should never
predict a Nash outcome for such games. PGT is also used to derive an
information-theoretic (and model-independent) quantification of the de-
gree of rationality inherent in a player’s behavior. This quantification
arises from the close formal relationship between game theory and sta-
tistical physics. That close relationship is also leveraged to extend game
theory to situations with stochastically varying numbers of players. This
extension can be viewed as providing corrections to the replicator dynam-
ics of conventional evolutionary game theory.

1 Introduction

Consider any scientific scenario, in which one wishes to predict some character-
istic of interest y concerning some physical system. To make the prediction one
starts with some information/data/prior knowledge .# concerning the system,
together with known scientific laws. One then uses probabilistic inference to
transform .# into the desired prediction. In particular, in Bayesian inference we
produce a posterior probability distribution P(y | .%).

Such a distribution is a far more informative structure than a single “best
prediction”. However if we wish to synopsize the distribution, we can distill
it into a single prediction. One way to do that is to use the mode of the
posterior as the prediction. This is called the Maximum A Posterior (MAP)
prediction. Alternatively, say we are given a real-valued loss function, L(y,y’)
that quantifies the penalty we incur when we predict ¥’ and the true value is
y. The Bayes optimal prediction then is the value of ¢ that minimizes the
posterior expected loss, [dyL(y,y')P(y | ). As an example, say that y € R
and L(y,y') = (y — v')®>. Then the Bayes-optimal prediction is the posterior
expected value of y, [dy yP(y | ). Formally, to predict any other value than
the Bayes-optimal prediction violates Cox’s and Savage’s axioms concerning the
need to use probability theory when doing science (see [1, 2, 3] and Sec. 2.2
below).

As a technical comment, in practice evaluating the Bayes-optimal prediction
may be computationally difficult. In addition doing so often requires that the
practitioner specify “prior probabilities”, which when done poorly can lead to
bad results. Finally, some non-Bayesian axiomatizations of inference have been
offered [4].

Due to these reasons, when .# consists of experimental data, in practice
often non-Bayesian techniques (e.g., Fisherian or Waldian minimax) are used
instead of pure Bayesian techniques. For example, one might use an unbiased
estimate of the data’s mean and an associated confidence interval rather than use
a Bayes-optimal predicted mean and associated posterior. More sophisticated



non-Bayesian techniques might use the bootstrap [5] procedure, stacking [6],
ete.!

The general relationship between such non-Bayesian techniques and purely
Bayesian techniques is extremely subtle [7]. However in the numeric sciences,
even using non-Bayesian techniques, the broad approach to analyze experimen-
tal data is to use .# (the experimental data) to generate a probability dis-
tribution over the quantity of interest. One can then, if desired, generate an
associated single “optimal” prediction. (This is why numeric data is presented
with “error bars”.) No one has ever suggested why this broad approach would
be appropriate when one is analyzing a physical system without humans and
# is experimental data, but not appropriate when one is analyzing a physical
system of a set of human players engaged in a game and .# is the game structure.

Indeed, the Bayesian approach can be motivated in purely game-theoretic
terms. Say we have a set of possible games, differing in their utility functions,
the players, etc. For each such game =, let Ay () indicate the set of all possible
joint mixed strategies in y. Now consider a two-stage “meta-game” I' that
consists of a scientist (S) playing against Nature (N). In this meta-game N’s
space of possible moves is {(v, Ax (7))}, i.e., the set of all possible games ~, and
for each such game, the set of all possible joint mixed strategies ¢ over . The
mixed strategy of player N is a distribution over this space, P(y,q € Ax(7)).

At the end of the first stage of the meta-game, N’s mixed strategy is fairly
sampled, producing an outcome (v/,¢’). Then S is told both 4" and N’s mixed
strategy, P(v,q € Ax(v)). Together, those give S a posterior over what ¢’ is,
P(¢' | 7).

In the second stage, S makes a move in Ay ('), i.e., picks a mixed strategy
over the game /. We interpret that move of the scientist S as a prediction of
what ¢ € Ax(y") was produced by the sampling of player Nature, N.

As usual in games against Nature, N has no utility function. However S
has a utility function, given by the negative of a loss function that quantifies
how accurate her move is as a prediction of N’s move ¢’. So to maximize her
expected utility the scientist wants to choose her move(s) — her prediction of
the joint mixed strategy that governs the game 7' — to minimize her expected
loss under the posterior P(q’" | 7).

Our current situation is exactly this setup, where 7/ comprises .#. Intu-
itively, S must translate her partial information into an inference of ¢’. How
to do this is the crux of PGT. Having done this, just as in conventional non-
cooperative game theory, the scientist S choose her move to minimize expected
loss (maximize expected utility) in I, i.e., she predicts that the joint mixed strat-
egy of the game + is the one that, under expectation, is as close to the actual
one as possible. That is the scientist’s assessment of the game’s “equilibrium”.

Note that for the same +" and the same inference by S of the mixed strategy
P(q' | v'), if we change S’s loss function, we change her prediction. This is
a game-theoretic example of how changing the loss function of the scientist

INote though that often such techniques can be cast as approximations to Bayesian tech-
niques [1, 2, 3].



external to the game will in general change the associated equilibrium concept
mapping 7’ to S’s prediction for the mixed strategy of 7.

The broad approach of converting .# to a distribution and then — if one
has a loss function — converting that distribution to a final prediction is the
one that will be adopted in this paper. This paper is about how to use this
approach to analyze games. In other words, it about how to infer the mixed
strategy P(q) of a Nature whose moves are joint mixed strategies of a game ~'.

As a particular example of the implications of this approach, suppose that
our prior information .# concerning the game ~' does not explicitly tell us that
the players in 4/ are all fully rational. Then in general, probabilistic infer-
ence will produce a non-delta function distribution over the “rationalities” of
the players (however that term is defined). In this way, applying probabilistic
inference to games intrinsically results in bounded rationality.

To be more concrete, note that mixed strategies in a non-cooperative game
are themselves probability distributions. Therefore probabilistic inference con-
cerning mixed strategies involves probability density functions over probability
distributions. Now in Shannon’s information theory [8, 9, 1, 10] the fundamental
physical objects under consideration are probability distributions, in the form
of stochastic communications channels. Accordingly, probabilistic inference in
information theory also involves probabilities of probabilities. This makes the
mathematical tools for probabilistic analysis in information theory contexts —
a topic already well-researched — well-suited to a probabilistic analysis of non-
cooperative games.

More precisely, a central concept in information theory is a measure of the
amount of information embodied in a probability distribution p, known as the
Shannon entropy of that distribution, S(p). Amongst its many other uses,
Shannon entroy can be used to formalize Occam’s razor based on first-principles
arguments. This formalization is known as the minimum information (Maxent)
principle, and its Bayesian formulation is embodied in what is known as the
entropic prior. This can serve as the foundation of a first-principles formalism
for probabilistic inference over probability distributions.

Using entropy to perform probabilistic inference this way has proven extraor-
dinarily successful in an extremely large number of applications, ranging from
signal processing to machine learning to statistics. Recently it has also been
realized that the mathematics underlying this type of inference can be used to
do distributed control and/or optimization. In that context the mathematics is
known as Probability Collectives (PC). Preliminary experiments validate PC’s
power for control of real-world (hardware) systems, especially when the system
is large (See collectives.stanford.edu and[11, 12, 13, 14, 15, 16, 17, 18].)

As another example of the successes of entropy-based inference, consider the
problem of predicting the probability distribution p over the joint state of of
a huge number of interacting particles. This is the problem addressed by sta-
tistical physics. As first realized by Jaynes, such prediction is an exercise in
probabilistic inference of exactly the sort Maxent can be applied to. Accord-
ingly statistical physics can be addressed — and in fact derived in full — using
Maxent [19, 1]. In light of all the tests physicists have done of the predictions of



statistical physics, this means that there are (at least) tens of thousands of ex-
perimental confirmations of that principle in domains with a very large number
of interacting particles.

We can similarly use Shannon’s entropy to do inference of the (the distri-
bution governing the) joint mixed strategy g¢(z) = Hivzl gi(x;) in any game
involving N players with pure strategies {z;}. Probabilistic inference applied
to game theory this way is known as Predictive Game Theory (PGT). In
PGT, the whole point is to apply probability theory in general and Bayesian
analysis in particular to games and their outcomes. This contrasts with their
use in conventional game theory within the structure of individual games (e.g.,
in correlated equilibria [20]).

1.1 The relation between PGT and conventional game
theory: a first look

Before presenting PGT in detail, this section illustrates some of its connection
to other work in game theory and statistical physics.

Statistical physics provides a unifying mathematical formalism for the physics
of many-particle systems. Any question related to that type of physics can be
analyzed, in principle at least, simply by casting it in terms of that formalism,
and then performing the associated calculations. There is no need to introduce
any new formalism for new questions, new Hamiltonians, etc.

PGT arises from information theory similarly to how statistical physics arises
from information theory, only in a different context. Accordingly, PGT can
play an unifying role for games analogous to the one statistical physics plays
for many-particle systems. All questions related to games can be analyzed, in
principle at least, simply by casting them in terms of PGT, and then performing
the associated calculations. There is no need to create new formalisms for new
game theory issues, new presumptions about the way humans behave in games,
etc; one simply casts them in terms of PGT.

Now in PGT the idea of an “equilibrium concept”, so central to conventional
game theory, does not directly arise. Let g(x) indicate a joint mixed strategy
over joint move z. Generically in PGT, the support of the probability density
function over ¢’s, P(g), has non-zero measure. In this, one does not allow
only a single “equilibrium” ¢, or even a countable set of ¢’s comprising the
“equilibrium” joint strategies; the number of allowed ¢’s is uncountable.

The fact that the support of P has non-zero measure typically ensures a
built-in “bounded rationality” to PGT. This is because typically there will be
q that are allowed (i.e., that have non-zero probability) in which one or more
of the players is not fully rational.? This aspect of the measure of P has other
consequences as well. For example, it means that rather than consider the

2There is other, more traditional work in game theory that shares PGT’s characteristic of
allowing so many ¢ with non-zero probability. For example, in Random Utility Models and
decision analysis [21, 22] and similar stochastic preference models [23, 24], it may be that only
one joint distribution ¢ is possible for some single instantiation of the utilities of the players.
However averaged over such utilities, many more joint distributions are allowed.



values of economic quantities of interest at a single (or at most countable set of)
equilibrium ¢, as is conventionally done, one should consider the expected value
of such quantities under P(q). This means that attributes of those quantities
like how nonlinear they are (which is crucial to approximating the integrals
giving their expectation values) have consequences when PGT is used to analyze
economics issues, consequences that they do not have when conventional game
theory is used.

Are there quantities in PGT that are analogous to conventional game the-
ory’s “equilibrium concept”, even in scenarios where P’s support has non-zero
measure? In other words, are there meaningful ways to identify a small set of
special ¢ for a distribution P(q) whose support has non-zero measure? One pos-
sible such PGT-based “equilibrium concept” is the Bayes-optimal g associated
with P(q). Note though that in general the Bayes-optimal ¢ depends not only
on P(q), but also on the loss function of the external scientist making a pre-
diction about the physical system at hand (i.e., about the game). So consider
two scenarios. Both concern the exact same game, with the exact same knowl-
edge concerning the game. Therefore we have the exact same distributions over
joint mixed strategies. However have the loss function of the external scientist
(reflecting how their prediction will be used) differ between the two scenarios.
Then the Bayes-optimal prediction will also differ between the two scenarios.
So the very choice of “equilibrium concept” is determined (in part) by the ex-
ternal scientist analyzing the game; the “equilibrium” joint mixed strategy is
not purely a function of the game itself, but rather also involves the external
scientist making predictions about the system.

This dependence on the external scientist exhibited by this choice for PGT’s
(analogue of the conventional) notion of a game’s “equilibrium” is not a philo-
sophical preference. The dependence is not something that we have discretion
to adopt or not. Rather it is intrinsic to our analyzing games with human
players the same we analyze other physical systems in the Bayesian paradigm:
by deriving distributions over truths based on partial information, and then
(if needed) making single predictions based on that distribution together with
an external loss function. Under this interpretation of equilibrium concept, we
have no choice but to accept the dependence of point predictions on the external
scientist making the prediction.

Another possible interpretation of the “equilibrium” of a game is as the
posterior

Plz| 7)) = /qu(x|q,f)P(q|f)
- / dq P(z | q)P(q | )
~ [daa@rial ) (1)

The Bayes-optimal ¢ reflects two kinds of ignorance. The first is that of us, the
external scientists, concerning the game and its players (i.e., the uncertainty



encapsulated in each P(q)). The second is the intrinsic noise/randomness in
how the players choose their moves (i.e., the uncertainty encapsulated in each
q). This is is also true for P(x | #). Unlike the Bayes-optimal ¢ though,
P(z | #) does not depend on the loss function of the external scientist.

On the other hand, in general P(x | .#) will not be a product distribution,
i.e., it will not have the moves of the players be independent. This is true even
though P(q | .#) is restricted to such distributions (a linear combination of
product distributions typically is not a product distribution). In addition, say
that P(q | .#) is restricted to Nash equilibria g. Typically, if there are more
than one such equilibria (i.e., the support of P contains more than one point),
then under P(z | .#) none of the players is playing an optimal response to the
mixed strategy over the other players. In other words, even though we might
know that all the players are in fact perfectly rational, our prediction of their
moves has “cross-talk” among the multiple equilibria and does not have perfect
rationality.

Example: To illustrate the foregoing, consider a two player game in which both
players have two possible moves, L and R. Indicate any (product distribution)
g by two numbers, ¢;(z1 = L) and ¢o2(x2 = L). Suppose that

Pl = B0 3+ o= 0/41/8) o)
Suppose also that we have quadratic loss. For that loss function, as is easy to
verify, the Bayes-optimal ¢ is the average ¢, [dq ¢(x)P(q | .%). Viewed as a
function of x, that particular Bayes-optimal ¢ is the same as P(x | .#). Here they
equal the distribution P(L,L) = P(R,R) = 5/16, P(R,L) = P(L,R) = 3/16.
Indicate that distribution as p. p is not a product distribution, so P(p | .#) = 0.
In other words, P(z | .#), this game’s “equilibrium”, is a joint mixed strategy
that cannot arise.

It is worth noting that a similar phenomenon occurs in simple single-dimensional
decision theory. Under quadratic loss, if P(z) is the actual distribution of a ran-
dom variable, the Bayes-optimal prediction — the prediction that minimizes
expected loss under that P — is y = Ep(z). That expectation may even be a
point where there is zero probability mass, i.e., it may be that P(y) = 0.

Typically for any P(q | .#) there is only one (perhaps difficult to evalu-
ate) Bayes-optimal prediction. For examnple, for quadratic loss functions, that
prediction is the (unique) posterior mean, [dq ¢P(q | -#). More strongly,
[dq q(z)P(x | #) is always unique. So under either of this interpretations
of “equilibrium concept”, typical games have a unique equilibrium. In this,
whichever of these PGT-based interpretations of equilibrium we adopt, all work
in conventional game theory that attempts to “fix” the possible multiplicity of
conventional concepts of equilibrium (e.g., the many proposed refinements of
the Nash equilibrium concept) is rendered moot. The same fate obtains for
the different equilibrium concepts that have been proposed in cooperative game
theory.



As a practical matter, often calculating the exact Bayes-optimal ¢ can be
quite difficult. As a substitute, even if it is not Bayes-optimal, we can calculate
the MAP gq. When P(q | .#) is peaked the MAP ¢ should be a good approx-
imation to the Bayes-optimal g. Indeed, it is common in Bayesian analysis
to approximate the Bayes-optimal prediction by expanding the posterior as a
Gaussian centered on the MAP prediction.

This MAP ¢ is the minimizer of a Lagrangian functional .#(q). In general
this MAP ¢ is a bounded rational equilibrium rather than a Nash equilibrium.
As shown below, this MAP bounded rational equilibrium can often be approx-
imated by simultaneously having each player ¢’s mixed strategy g;(x;) be a
Boltzmann distribution over the values of its expected utility for each of its
possible moves:

gi(w:) oc ¥ Fa’le) (3)

where the joint distribution g(z) = []; ¢;(z;) and u’(z) is player ’s utility
function.

In general there may be more than one solution to the set of coupled equa-
tions Eq. 3. (See [25] for examples of closed-form solutions to this set of
coupled equations.) In conventional game theory, the set of all such solutions
is sometimes called the (logit response) Quantal Response Equilibrium (QRE)
[26, 27, 28]. Tt has been used as a convenient way to encapsulate bounded ratio-
nality. Typically approximating the MAP mixed strategy with the QRE should
incur less and less error the more players there are in the game. However as
discussed below, for small games the QRE may be a poor approximation to the
MAP (which itself is an approximation to the Bayes-optimal prediction). Below
the correction terms of the QRE (as an approximator of the MAP distribution)
are calculated.

Another relation between the QRE and PGT, one that doesn’t involve ap-
proximations, starts with the fact that at Nash equilibrium each player i sets its
strategy ¢; to maximize its expected utility E, , ,(u®) for fixed ¢_;.> Consider
instead having each player i set ¢; to optimize an associated functional, the
“maxent Lagrangian”:

Zi(qi) & Eq g, (W) — Ti5(¢i, q—3). (4)

For all T; — 0 the equilibrium ¢ that simultaneously minimizes .%; Vi is a Nash
equilibrium [29, 27, 30, 31, 32, 33]. For T; > 0 one gets bounded rationality.
Indeed, under the identity 7; £ B L Vi the solution to this modified Nash
equilibrium concept turns out to be the QRE.

As discussed in [29], the maxent Lagrangian also arises in statistical physics,
where it is called (a mean field approximation to) the “free energy”. This
formal connection between PGT/QRE and statistical physics can be exploited
in several ways. As an example, consider the case where one’s prior information
consists of the expected energy of a set of interacting particles with joint state r,

3Throughout this paper the minus sign before a symbol specifying a particular player
indicates the set of all of the other players, and similarly for a minus sign before a set of
player symbols.



a scenario known as the “canonical ensemble” in statistical physics (CE). In this
situation the MAP estimate of the density function p(r) using an entropic prior
is the minimizer of £ (p) = E,(H)—TS(p), where H is the energy of the system
of particles. In light of the formula for the maxent Lagrangian, this suggests
tha bounded rational players in a game can be made formally identical to the
particles in the CE. Under this identification, the moves of the players play the
roles of the states of the particles, and particle energies are translated into player
utilities. Particles are distributed according to a Boltzmann distribution over
their energies, and mixed strategies are Boltzmann distributions over expected
payoffs.*

This connection between PGT and statistical physics raises the potential
of transferring some of the powerful mathematical techniques that have been
developed in the statistical physics community into game theory. As an example,
in the “Grand Canonical Ensemble” (GCE) the number of particles of various
types is variable rather than being pre-fixed. One’s prior information is then
extended to include the expected numbers of particles of those types. This
corresponds to having a variable number of players of various types in a bounded
rational game. This suggests how to extend game theory to accommodate games
with statistically varying numbers of players.” Among other applications, this
provides us with a new framework for analyzing games in evolutionary scenarios,
different from evolutionary game theory. (A different type of “GCE game” is
analyzed below.)

There are many other aspects of statistical physics that might carry over
to PGT. For example, even in the CE, often there are regimes where as some
parameter of the system is changed an infinitesimal amount, the character of
the system changes drastically. These are known as “phase transitions”. The
connection between the math of PGT and that of statistical physics suggests
that similar phenomena may arise in games with human players.

PGT has many other advantages in addition to providing a way to exploit
techniques from statistical physics in the context of noncooperative games. For
example, as illustrated below it provides a natural way to quantify the rationality
of experimentally observed behavior of human subjects. One can then, for
example, empirically observe the dynamic relationship coupling the rationalities
of real players as they play a sequence of games with one another. (Since such
correlations are inherently a property of distributions across mixed strategies,
they are not readily analyzed using conventional non-distribution-based game
theory.)

Another strength of PGT arises if we change the coordinates of the under-
lying space of joint pure strategies {z} . After such a change, our mathematics
describes a type of bounded rational cooperative game theory in which the moves

4Note that having the probability density over mixed strategies follow a Boltzmann distri-
bution does not mean that functionals of that density are Boltzmann-distributed. In partic-
ular, the distribution over values of the utility function need not be Boltzmann-distributed.

5There are some special cases in conventional game theory that consider, in a full-rationality
context, allowing the number of players to vary. See for example [34, 35], which address varying
numbers of players in auctions and in bargaining, respectively.



of the players become binding contracts they all offer one another[36, 37]. In this
sense, PGT provides a novel relation between cooperative and noncooperative
game theory.

1.2 Roadmap

The purpose of this paper, like that of the original work on game theory, is to
elucidate a framework for analyzing the reasonably imputed consequences about
the behavior of the players when all one knows is the game structure. If possible,
this framework should be able to accommodate extra knowledge concerning the
game and/or the players if it is available. Loosely speaking, the goal is to provide
for game theory the analog of what the canonical and grand canonical ensembles
provide for statistical physics: a first-principles mathematical scaffolding into
which one inserts one’s knowledge concerning the system one is analyzing, to
make predictions concerning that system. (See the future work section below
for further discussion of this point.)

To do this, the next section starts by cursorily reviewing noncooperative
game theory, Bayesian analysis and the entropic prior arising in information
theory. In an appendix that prior is illustrating by showing how it can be used
to derive statistical physics. In the following section foundational issues of PGT
and associated mathematical tools are presented.

The next two sections form the core of the player. The first of them applies
the entropic prior to infer mixed strategies of coupled players in a game +.
This application can be viewed as a prescription for how to infer the mixing
strategy P(q | -#) adopted by a Nature involved in a meta-game with a scientist,
where the moves ¢ of Nature are mixed strategies in . This section then
relates this coupled-players analysis to the QRE. The section after this considers
independent players, leveraging the analysis for coupled players.

The following section illustrates some of the breadth of PGT. It is shown
there how bounded rationality arises formally as a cost of computation for the
independent players scenario. We then present rationality functions. These are
a model-independent way to quantify the (bounded) rationality of the mixed
strategies followed by real-world players. This section ends by showing how to
apply PGT to games with stochastically varying numbers of players.

An appendix discusses the relation between PGT and previous work, and
more generally the history of attempts to apply information theory within game
theory.

2 Preliminaries

This section first reviews noncooperative game theory. It then reviews informa-
tion theory and the associated Bayesian analysis. It ends by illustrating that
analysis with a review of how it can be used to derive statistical physics. It
is recommended that those already familiar with these concepts still read the
middle subsection on Bayesian analysis.
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2.1 Review of noncooperative game theory

In conventional noncooperative normal form game [38, 35, 39, 40, 41] theory
one has a set of N independent players, indicated by the natural numbers {1,
2, ..., N}. Each player ¢ has its own finite set of allowed pure strategies,
each such pure strategy written as x; € X;. We indicate the the size of that
space of possible pure strategies by player i as | X;|. The set of all possible joint
strategies is X 2 X; x Xy x...x Xy with cardinality | X| £ va:l | Xi|, a generic
element of X being written as x.

A mixed strategy is a distribution ¢;(x;) over player i’s possible pure
strategies, {z;}. In other words, it is a vector on the |X;|-dimensional unit
simplex, Ax,. Each player i also has a utility function (sometimes called a
“payoff function”) u’ that maps the joint pure strategy of all N of the players
into a real number.

As a point of notation, we will use curly braces to indicate an entire set,
e.g., {Bi} is the set of all values of ; for all i. We will also write Ay to refer
to the Cartesian product of the simplices Ax,, so that mixed joint strategies
(i.e., product distributions) are elements of Ay. We will sometimes refer to u’
as player i’s “payoff function”, and to player i’s pure strategy x; as its “move”.
x is the joint move of all N players. As mentioned above, we will use the
subscript —i to indicate all moves / distributions / utility functions, etc., other
than i’s. We will use the integral symbol with the measure implicit, so that it
can refer to sums, Lebesgue integrals, etc., as appropriate. In particular, given
mixed strategies of all the other players, we will write the expected utility of
player i as E(u') = [dx I1; 9 (z;)u’(x). As a final point of notation, we will
write @ to mean a finite indexed set all of whose components are either real
numbers are infinite (greater than any real number). We will then write @ = b
to indicate the generalized inequality that Vi, either a; and b; are real numbers
and a; > b;, both a; and b; are infinite, or b; is a real number and a; is infinite.
Also, in the interests or expository succinctness, we will be somewhat sloppy in
differentiating between probability distributions, probability density functions,
etc.; generically, “P(...)” will be one or the other as appropriate.

Much of noncooperative game theory is concerned with equilibrium con-
cepts specifying what joint-strategy one should expect to result from a particu-
lar game. In particular, in a Nash equilibrium every player adopts the mixed
strategy that maximizes its expected utility, given the mixed strategies of the
other players. More formally, Vi,q; = argmax [dx q H#i q;(z;) ui(z) [42,
38, 39].

One problem with the Nash equilibrium concept is its assumption of full
rationality. This is the assumption that every player ¢ can both calculate what
the strategies g;«; will be and then calculate its associated optimal distribution.®
This requires in particular that each player calculate the entire joint distribution
q(x) =[], ¢;(z;). If for no other reasons than computational limitations of real

SHere we use the term “bounded rationality” in the broad sense, to indicate any mixed
strategy that does not maximize expected utility, regardless of how it arises.
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humans, this assumption is essentially untenable. This problem is just as severe
if one allows statistical coupling among the players [20, 38].

For simplicity, throughout each analysis presented in this paper we will treat
N, the pure strategy spaces, the associated utility functions, and the statisti-
cal independence of the pure strategies chosen by the players, as fixed parts
of the problem definition rather than random variables. Further we will im-
pose no a prior: restrictions about whether the players have encountered one
another before, what information they have about one another and the game
they’re playing, whether they have engaged in the game before, what their in-
formation sets are, whether there are any social norms at work on them, etc.
We do not even require, a priori, that the players be prone to human psy-
chological idiosyncracies. To incorporate any information of this sort into the
analysis would mean modifying the priors and/or likelihoods considered below
in a (mostly) straightforward way, but is beyond the scope of this paper.

2.2 Review of Bayesian analysis and decision theory

Consider any scenario in which we must reason about attributes of a physical
system without knowing in full all salient aspects of that system. This is the
basic problem of inductive inference. How should we do this reasoning? Many
different desiderata, arising from work by De Finetti, Cox, Zellner and many
others, lead to the same conclusion: if our goal is to assign real-valued numbers
to the different hypotheses concerning the system at hand, we should use the
rules of Probability theory[43, 44, 45, 4, 46, 47, 1, 2, 3]. In particular, this
implies that we should use Bayes’ theorem to calculate what we want to know
from what we are told/assume/observe/know:

P(truth z | data d) o« P(d|z)P(z) (5)

where the proportionality constant is set by the requirement that P(truth z |

data d) be normalized, and “data” means everything we are told /assume/observe/know
concerning the system. P(truth z | data d) is called the posterior probability,
P(data d | truth z) is called the likelihood, and P(z) is called the prior.

Say that rather than a full posterior distribution, for some reason we must
predict a single one of the candidate hypotheses z. According to Savage’s ax-
ioms, to do this we must be provided with a loss function L(y, z) that maps
any pair of a truth z and a prediction y to a real-valued loss (see [43] and
various chapters in [35]). Then the associated Bayes optimal prediction is
argming, Fp(L(y, z)) where the expectation is over the posterior distribution
P(truth z | data d).”

"There is controversy about the precise details of Savage’s axioms and their implica-
tions, the precise way priors should be chosen, and even the precise physical meaning of
“probability” [7]. Such details are not important for current purposes. Other choices can be
made, based on other desiderata. However typically the broad outlines of any approach based
on such alternatives is the same: to do inference one constructs a probability distribution over
possible truths and then, if needed, distills that distribution into a single prediction.
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Note that the loss function is determined by the scientist external to the
system who is making the prediction; it is not specified in the definition of the
system under consideration.

According to the foregoing, to do statistical inference for a particular physi-
cal scenario our first task is to translate the “particular physical scenario” we’re
considering into a mathematical formulation of possible truths z, data d, etc.
Having done that, we can employ mathematical tools like Bayes’ theorem, ap-
proximation techniques for finding Bayes-optimal predictions, etc. to analyze
our mathematical formulation. After doing this we use our translation to con-
vert all this back into the physical scenario. This translational machinery is
how we couple the abstract mathematical structure of probability theory to our
particular physical inference problem.

To assist us in making this translation, we imagine an infinite set of instances
of our physical scenario. All of those instances share the physical characteristics
of our scenario that fix our statistical inference problem. Fwery other physical
characteristic is allowed to vary across those instances. In this way the set of all
of those instances define our statistical inference problem [7]. Formally, we define
the invariant of our inference problem as the set of exactly those characteristics
of the physical scenario, and no others, that would necessarily be the same if
we were presented with a novel instance of the exact same inference problem.
Equivalently, we can define the invariant as the set of all the physical instances
consistent with those characteristics, and no instance that is inconsistent with
those characteristics. By explicitly delineating an inference problem’s invariant,
we can mathematically formalize that problem.

As discussed in the introduction, this Bayesian perspective is inherent in
much of conventional game theory. Most obviously, all the work on Bayesian
games, correlated equilibria, etc. adopts elements of the Bayesian perspective.
In addition, as described above, we can define a meta-game I' of a Scientist S
playing against Nature N, in which the possible states of N are the possible
games Y we wish to analyze and the associated mixed strategies ¢ of that game.
The move of S in I is interpreted as a prediction of N’s move, i.e., of the mixed
strategy of 4. The crucial issue in this meta-game is how, based on knowing
that the game is -y, the external scientist should infer N’s mixed strategy, P(q).
This is a problem of how to infer a distribution over distributions.

This inference, done using invariants, is the topic of PGT. In this paper
we will only explore such use of invariants in conjunction with the entropic
prior, since that prior is directly concerned with inferring distributions over
distributions. However other priors also merit investigation.

2.3 Review of the entropic prior

Shannon was the first person to realize that based on any of several separate
sets of very simple desiderata, there is a unique real-valued quantification of
the amount of syntactic information in a distribution P(y). He showed that
this amount of information is (the negative of) the Shannon entropy of that
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distribution, S(P) = — [ dy P(y)ln[%].8 Note that for a product distribution

P(y) =11, Pi(yi), entropy is additive: S(P) =), S(F;).

So for example, the distribution with minimal information is the one that
doesn’t distinguish at all between the various y, i.e., the uniform distribution.
Conversely, the most informative distribution is the one that specifies a single
possible y.

Say that the possible values of the underlying variable y in some particular
probabilistic inference problem have no known a priori stochastic relationship
with one another. For example, ¥y may not be numeric, but rather consist of
the three symbolic values, {red, dog, Republican}. Then simple desiderata-
based counting arguments can be used to conclude the prior probability of any
distribution p(y) is proportional to the entropic prior, exp (—aS(p)), for some
associated non-negative constant o.”

Intuitively, absent any other information concerning a particular distribution
p, the larger its entropy the more a priori likely it is.!?

If the possible y have a more overt mathematical relationship with one an-
other, the situation is often not so clear-cut. For example, symmetry group
arguments are often invoked in such situations, and can give more refined pre-
dictions. Despite this, for the most important scenarios it considers, scenarios
where it has had such great successes, statistical physics simply uses the en-
tropic prior, as described below. In accord with this, in this paper attention
will be restricted to the entropic prior.

Say we have some information . concerning p. Then by Bayes’ theorem,
the posterior probability of distribution p is

P(p | F) ocexp (—aS(p))P(S | p). (6)

The associated MAP prediction of p based on .# is argmax,P(p | ).

Intuitively, Eq. 6 pushes us to be conservative in our inference. Of all hy-
potheses p equally consistent (probabilistically) with our provided information,
we are led to prefer those that contain minimal extra information beyond that
which is contained in the provided information. This is a formalization of Oc-
cam’s razor.

Physically, .# is all characteristics of the system that would not change if
we were presented with a novel instance of the exact same inference problem.

81, is an a priori measure over y, often interpreted as a prior probability distribution.
Unless explicitly stated otherwise, here we will always assume it is uniform, and not write it
explicitly. See [19, 1, 8].

9The issue of how to choose @ — or better yet how to integrate over it — is quite subtle,
with a long history. See in particular work on ML-II [44]and the “evidence procedure” [10].)

10Note that this is different from saying that the larger s is, the more a priori likely it is
that the entropy of p is larger:

Ps(s)

/ dp 6(S(p) — 5)P(p)

J dp 35(S(p) — s)exp (—aS(p))
[ dp exp (—aS(p)) '
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From a frequentist perspective, it is an invariant across a set of experiments:
# delineates what characteristics of the system are fixed in those experiments,
while all characteristics not in .# are allowed to vary. In essence, . is the
invariant that defines the inference problem.

In particular, .# includes any functions of p, F'(p), such that we know (by
the specification of the precise inference problem at hand) that F(p) would not
change if we confronted a novel instance of the same inference problem. In
general we may not know the actual value of F(p) that is shared among the
instances specified by .#; we may only know that that value is the same in all
of those instances.!!

Note that .# cannot specify p, the precise state of the system — there must
be some salient characteristics of the system that are not fixed by .#. If this were
not the case the likelihood P(.# | p) would be a delta function, and therefore the
prior would be irrelevant. In such a case, statistical inference would reduce to
the truism “whatever happens happens”. Accordingly, we never have .# contain
a set of functions {F;(p)} whose values jointly fix p exactly.

An important example of the foregoing occurs in statistical physics, where .
is the observed temperature T of a physical system. T is taken to fix a function
F(p), namely the expected energy H(z) of the system under distribution p(x):
F(p) = [dx H(z)p(z) is fixed by .#. Tt is the application of the entropic prior
to this situation that results in the canonical ensemble mentioned above. The
number of experiments validating this application is extraordinary; including
experiments in high school labs, it is probably on the order of 10° (at least). In
this paper that application serves as a touchstone for how to translate .# into a
distribution over distributions, and therefore as the primary analogy mentioned
in the derivation of PGT. However in the interests of expediting the flow of this
paper, that application is relegated to an appendix.

3 Predictive Game Theory - general considera-
tions

3.1 The two types of game theory

Say we are presented with a noncooperative normal form game for N players
other than us, and a set of N subjects who will fill the roles of the players in
a fixed manner. We wish to make predictions concerning the outcome of that
game when played by that set of players other than us. As discussed above, for
us to obey Cox’s axioms, when making those predictions we must use probability
theory. If we wish to distill the probability distribution over outcomes into a

11Relating this back to the mathematics of probability theory, in such a case that value of
F(p) is known as a hyperparameter. Formally, hyperparameters have their own priors. To
get a final posterior over what we wish to infer — p — we must marginalize over possible
values of all hyperparameters. Implicitly, the reason that here we simply choose one value of
a hyperparameter and discard all others is that we expect the posterior distribution of the
hyperparameter to be highly peaked, so that we do not need to carry out such marginalization.
See the discussion of ML-II in [44, 43, 10], and also [10].
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single prediction, then to obey Savage’s axioms we must have a loss function
and use decision theory.

Note that these normative axioms differ fundamentally from those that can
be used to derive various equilibrium concepts. The axioms underlying equilib-
rium concepts concern external physical reality, namely the players of the game.
They concern something outside of our control. In other words, such axioms
are hypothesized physical laws. Like any other such laws, they can be contra-
dicted or affirmed by physical experiment, at least in theory. In fact, behavioral
game theory [48] essentially does just that, experimentally determining what
such hypothesized physical laws are valid. (See also all the work on behavior
economics [49, 50].)

In contrast, Cox’s and Savage’s axioms are normative. They tell us how best
to make predictions about the physical world. They make no falsifiable claims
about the real world; it is under our control whether they will be followed, not
the external world’s control. Violating them in our analysis is akin to performing
an analysis in which we violate the axioms defining the integers.

Before showing some ways to arrive at a distribution over outcomes for this
situation, we must clarify what the space of “outcomes” of the game is. There
are two broad types of such spaces to consider, with associated types of game
theory.

In type I game theory, what a player chooses in any particular instance of
the game is its move in that instance. (This is the analog of the variable y in
App.9.) In general, in the real world a particular human’s choice of move will
vary depending on their mood, how distracted they are, etc. Physically, this
variability arises from variability in the dynamics of neurotransmitter levels in
the synapses in their brain during their decision-making, associated dynamical
variability in the firing potentials of their neurons during that process, etc.

Due to this variability the choice of each player is governed by a probability
distribution. (This is the analog of the variable ¢ in App.9). So the joint choice
of the players is also described by a distribution. We write that joint distribution
as

q(x) = Pz]q)
N-1
= Plan | [ P@il ¢ zip1,wita,...)
i=1
N-1

= P(zy|q) _ P(zi | q)
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-
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where the third equality follows from the statistical independence of the players’
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choices. So the probability of a particular joint move x is given by a product
distribution g(z) £ [T, ¢;(x;).'? If the interaction between the humans is not,
physically, a conventional normal form noncooperative game, then the space of
allowed ¢ must be expanded to allow g that statistically couple the moves. Such
extensions are beyond the scope of this paper.

q incorporates the subconscious biases of the players, the day-to-day distri-
bution of their moods, and more generally the full physical stochastic nature
of their separate decision-making algorithms. It also reflects what the players
know about each other, whether they have directly interacted before, what they
know about the game structure, their information sets, etc. In short, q is the
physical nature of the game setup, in toto. Note that we cannot examine the
precise states of all the neurons and neurotransmitters in the brains of the play-
ers, and even if we could we cannot precisely evaluate the associated stochastic
dynamics. Accordingly, while it is physically real, in practice it is impossible
for us to ascertain a distribution ¢; exactly.

In contrast, x is the quantity that the players consciously determine, and it is
observable. ¢ is instead the physical process that specifies how the players select
that observable. Both of these quantities differ from our (limited) knowledge
about ¢. That knowledge is embodied in probability distributions P(g). P
reflects us as much as the players.

We imagine an infinite set of instances of our setup, i.e., an infinite set of
¢’s. The invariant .# specifies all characteristics of the system — and only those
aspects — such that if they had been different in some particular instance, we
would know it. In this paper those aspects include the players’ utility functions,
their identities, etc. In going from one instance to the next, we assume the
problem is “reset”, i.e., there is no information conveyed from one instance to
the next. (In particular the players’ minds are “wiped clean” between instances.)
Our inference problem is to predict ¢ based on such an invariant, i.e., formulate
the posterior P(q | .#).13

In type II game theory, what player i chooses in any particular instance of
a game is a mixed strategy, ¢;(z;). Each player i’s mixed strategy is separately
randomly sampled, “by Nature”, to get the player’s move z;. So as in type I

games, q(z) = T, qi(x:).

12T,00sely speaking, when used as an approximation in statistical physics, such product
distributions are called “mean field theory”. See [51].

131n the real world we don’t know a player 4’s (risk-neutral) utility function, but must infer it
based on what actually is known/observed about player i’s relative preferences, d;. Formally,
this means {d;} € ., not u?, and we must integrate over the “hidden variable” u! to get the
quantity we are ultimately interested in:

Pl #) = Plq|{d}..)
= [atuyP@ () ) OPE) | ()
= [atiyr@l Wik 0PQu) ),

where “...” indicates the contents of .# other than {d;}. For simplicity, in this paper we

bypass this integral by assuming d; = u; Vi, i.e., we assume .# includes the {u;} directly.
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In general, in real world type II games, a particular human’s choice of mixed
strategy will vary depending on their mood, how distracted they are, etc. Ac-
cordingly the joint choice of the players is described by a distribution 7 (q). 7
reflects the stochastic nature of the players, what they know about each other,
what they know about the game structure, etc. In short, 7 s the physical na-
ture of the setup. In contrast, our (limited) knowledge about 7 is embodied in
a distribution P(r).

As usual, we imagine an infinite set of instances of our setup, i.e., an infinite
set of 7’s, with no information conveyed between instances. The invariant %
specifies all characteristics of the system — and only those aspects — such that
we would know if they had been different in some particular instance. Our
inference problem is to predict 7, i.e., formulate the posterior P(r | .#). So an
“entropic prior” concerns the probability of any such joint distribution 7, our
likelihood must concern m, etc. Note that the invariant setting the likelihood,
P(7 | m), is a characteristic of an entire distribution over joint mixed strategies
(namely 7), not (directly) of the joint mixed strategies themselves.

In both game types, since ¢ is a product distribution, if one is given g then
knowing one player’s move provides no extra information about another player’s
move. (Formally, P(x; | ¢,x;) = P(x; | ¢).) However in the absence of knowing
q in full, knowing just the g¢; of some player ¢ may provide information about
other the g; of other players j. For example, this could be the case if those
mixed strategies ¢; and g; are determined in part based on previous interactions
between the players. Similarly, even if the players have never previously inter-
acted, if there is overlap in what they each know about the game (e.g., they
each know the utility functions of all players), that might couple members of
the set {¢;}. Accordingly, in type I game theory P(q | .#) need not be a product
distribution (over the g;) in general, and in type II game theory 7 need not be
a product distribution.

In general, which game type one uses to cast the problem is set by the
problem at hand. If the players all consciously choose mixed strategies — if
that’s how their thought processes work — then we have a type II game. If the
players choose moves, we have a type I game. One can even have mixed game
types, in which some players choose moves, and some choose mixed strategies.
Our lacking knowledge of what scenario we face is analogous to lack of knowledge
concerning the payoff structure: our inference problem is not fully specified.'*

For the reasons elaborated above, we will adopt the entropic prior for both
game types. Note that for either game type, the entropic prior evaluated for a
product distribution is itself a product, i.e., if g(x) = [[; ¢i(;), then e*5(@ =

14 0Of course, the lack of knowledge underlying both game types can in principle be addressed
by setting a prior probability distribution over the underlying unknown and defining an as-
sociated likelihood function. Here that would mean distributions over whether each player
chooses moves or chooses mixed strategies. No such analysis which would essentially mix the
two game types is considered in this paper.
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IL e5(a) - As a result, by symmetry the associated marginal over z,
/dac q(z)P(z) x /dm Hqi(xi)eas(q”, (8)

must be uniform over z.
In some situations P(q | -#) will not be of interest, but rather the associated
posterior

P! #) = [dPla) ) ] a) )

will be. Now for the entropic prior, we know what the associated prior P(x)
is (it’s uniform). This suggests one formulate a likelihood P(.# | x). One
could then use Bayes’ theorem with the uniform P(z) to arrive at the posterior
P(z | ) directly, rather than arrive at it via the intermediate variable ¢q. This
would constitute a third type of game, in addition to the other two presented
above, in which instances would be x’s rather than ¢’s or 7’s.

Unfortunately, it is hard to see how to formulate the likelihood P(.# | )
without employing ¢ or m. Recall that an invariant .# is the set of all physi-
cal instances that can occur in our inference problem, and no other instances.
However in formulating P(.# | x) instances are specified by values of z, and for
almost any inference problem, all 2’s may occur. So in any such inference prob-
lem, the associated P(.# | ) does not exclude any z at all, i.e., it is vacuous, as
far as inference of x is concerned. It is also hard to see what might be gained by
using such an alternative game type. Indeed, since it conflates the distribution
q concerning physical reality with the distribution P concerning our (lack of)
knowledge about that reality, one would expect substantial losses of insight if
one used such an alternative game type for one’s analysis.

To distinguish it from distributions like g or 7, we will refer to a distribu-
tion P that describes our inference as a predictive distribution.'® So for
example, both P(q | .#) and P(w | .#) are predictive distributions. As other
examples, P(z | &) = [dq P(q | #)q(x), and P(q | .#,x;) are also predictive
distributions. Predictive distributions reflect our knowledge/insight/ignorance
concerning the game. This contrasts with distributions like ¢ and =, which
reflect the “physical” distributions of the players in the game.

As a final notational comment, we will use the following shorthand for each
1’s “effective utility”, sometimes called i’s environment:

Ul(x;) 2 E(u’ | ). (10)
In type I game theory this reduces to
Ul(z;) = Eq_i(ui | z;) = /dx_i qoi(z_i | z)u (i, ;)

/dx_i u'(x) H gj(x;) (since g is a product distribution)(11)
J#i

15This use of the term “predictive distribution” should not be confused with the one arising
in Bayesian statistics. We will not have need to use the latter term in this paper.

19



We will write E, (u' | x;) as U} (x;) when the ¢_; defining U’ needs to be

i

made explicit. We will also write
By(u') = ¢; - U’ (12)

when working with type I games. (The expansion of U’ for type II games
proceeds analogously.)

3.2 Needed Mathematical Tools

This section presents some preliminary mathematical tools from statistical physics
that are useful for performing Bayesian analysis of games using entropic priors.
In essence, these tools amount to a suite of relationships involving the Boltz-
mann distribution, entropy, and optimization. Though it is a bit laborious to
work through these tools, they are crucial for understanding bounded rational
players in general, and for understanding the QRE in particular. We will focus
on type I games; as usual, similar considerations apply for type II games.

(1) Start by noting that if we take its logarithm, any distribution ¢;(z;) can
be expressed as an exponential of some function over z;. So in particular we
can write any MAP ¢; that way:

argmax, P(g; | %) x ePifi(i) (13)

for some appropriate function f; and constant 8; > 0.16

(2) We now relate the formulation of an MAP ¢; in exponential form (as in
(1)) to a particular choice for our game theory problem’s invariant.

Say we associate with each player ¢ a “guess” she makes (potentially ex-
plicitly, potentially not) for her environment function, Ué Write that guessed

function as f;(z;). We presume that we can view the player’s behavior as though
she were trying to perform well for that (guessed) environment. Formally, we
presume that in each instance of our inference problem, the mixed strategy of
player i results in the same (invariant) value K; for what E(U?) would be if
player i’s guess for her environment U® were correct, i.e., if U equalled f;. So
the invariant of the game for player i is

g - fi = K;. (14)

Intuitively, with this invariant, as one goes from one instance of the inference
problem to the next, we presume that player ¢ is always just as smart, as mea-
sured with the (potentially counterfactual) environment function f;.

For this invariant, the likelihood P(.# | ¢;) restricts ¢; to lie on the hyper-
plane of distributions obeying Eq. 14:

P(S | qi) =6(qi- fi — Ki). (15)

160f course, there is always freedom to absorb some portion of any §; into the associated
fi, but that is irrelevant for current purposes.
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So given our use of the entropic prior, the posterior for player i is
P(gi | &) o e*595(q; - fi — Ki). (16)

Accordingly the MAP ¢; is given by the ¢ maximizing the so-called maxent
Lagrangian,
L(q:) £ S(qi) + Bilgi - fi — Ki] (17)

where in the usual way the 3; are the Lagrange parameters, here divided by
17
a.

Solving for the g; minimizing this Lagrangian, qf ‘. we get the distribution of
Eq. 13, with 3; a function of K;. Equivalently, we can take K; to be a function
of 3;. This is what we will do below.

Now parallel the conventionaly nomenclature of statistical physics, and de-
fine the partition function

Zs,(B;) & /dmie’gifi(“). (18)

(Note that the partition function is the normalization constant of Eq. 13.) Then

using Eq. 13 to express the Boltzmann distribution qf  our constraint Eq. 15
means that
Ki(Bi)=fi-q= n(Zy,(Br) (19)
ds;

as is readily verified by evaluating the derivative. As shorthand, sometimes we
will absorb 3; into fi, and simply write Z(V) £ Zy(1).

So say we are given some distribution ¢;. Take its logarithm to get a function
fi and exponent 3;. Then use Eq. 19 to translate that f; and (; into a value
of K;. Using these choices of Kj;, f; and f;, formulate the associated invariant
& given by Eq. 14. As shown by Eq. 13, the MAP distribution for that .# is
our starting distribution g;. In this way we can view that .# as the “effective”
invariant for this (arbitrary) starting ¢;. We can translate any ¢; into an MAP
distribution by choosing an appropriate .# this way.

(3) We will refer to the function K;(.) arising in Eq. 19, which maps 3; to the
expected value of f; under ¢;*(.), as the Boltzmann utility for player i, where
fi is implicit. We now present some general characteristics of the Boltzmann
utility, characteristics that are particularly important for understanding the
QRE.

First, with slight abuse of terminology, we will sometimes write the Boltz-
mann utility with f; explicitly listed as the first argument and the subscript ¢

17As an aside, say that we replaced Eq. 14 with the inequality constraint g; - f; > Kj.
The entropy function is concave, and so is this inequality constraint. Accordingly, by Slater’s
theorem, there is zero duality gap [52] and we can apply the KKT conditions to get a solution.
In other words, for this modified invariant the maxent Lagrangian still applies, and therefore
so does the solution of Eq. 13.
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dropped, i.e., as K(f,3 € R"). In this case it is the domain of the first argu-
ment of the Boltzmann utility K (f,8) that (implicitly) sets the space X; to be
integrated over to evaluate K(f,3).1%

As is readily verified, the variance (over f; values) of the Boltzmann distri-
bution of Eq. 13 is given by the derivative of K;(8;) with respect to 3;. Since
variances are non-negative, this means that K;(8;) is a non-decreasing func-
tion. In fact, for fixed f;, so long as f; is not a constant-valued function (i.e.,
not independent of its argument), the associated Boltzmann utility K;(.) is a

monotonically increasing bijection with domain 3; € [0, 00) and associated range

dx; fi(x;
[ L) o, fi(x:). 10

We extend the domain of definition of K; by adding to it the special value
“00*”, and defining K;(00*) = maxg, fi(z;). This makes K; a bijection whose
domain is 3; € [0,00) U oo* when f;(z;) is not a constant, and is the singleton
{o0*} otherwise. In both cases the range is [%7 maxg, fi(z;)].

With some abuse of notation from now on we will extend the meaning of the
linear ordering “>” to have co® > k Vk € R. We will will also drop the asterisk
superscript from “oo*”, relying on the context to make the meaning of “co”
clear. We will engage in more abuse by writing “p” even if some component
b; = oo (so that b is not a Euclidean vector, properly speaking).

Just as expected f; cannot decrease as the Boltzmann exponent rises, the
entropy of a Boltzmann distribution e%/:(*) /Z (3;) cannot increase as its Boltz-
mann exponent 3; rises.?’ So the picture that emerges is that as 3; increases,
the Boltzmann distribution gets more peaked, with lower entropy. At the same
time, it also gets higher associated expected value of f;.

(4) We now extend the discussion to allow ¢; not to be qf ‘ the Boltzmann
distribution over values of f; with exponent §; (the distribution in Eq. 13). This
extension will prove important in quantifying the rationality of a player based
solely on their mixed strategy and environment (Sec. 6.2 below).

First expand S(g;) for the case where in fact ¢; does equal the Boltzmann
distribution ¢} . Then using Eq. 14, we see that for this Boltzmann distribution

18Note that despite the terminology, the Boltzmann utility is not a “utility function” in the
sense of a mapping from x to R. Rather it’s what expected utility would be for a particular
type of mixed strategy, in a particular environment, as a function of parameters of that mixed
strategy.

1976 see this, note that the variance is non-zero for all 3; < oo, so long as f; (z;) is not a
constant. Accordingly, under such circumstances K;(/8;) is invertible.

20To see this say we replace the invariant g; - f; = K;(8;) with ¢; - f; > K;(8;). Then for
fixed q—;, the MAP g; is the ¢; that maximizes S(g;) subject to that inequality constraint
that g; - fi > K;(8;). The entropy is a concave function of its argument, as is this inequality
constraint, so our problem is concave. Therefore the critical point of the associated Lagrangian
is the MAP ¢;. Now if we increase 3;, and therefore increase Kj;, the feasible region for our
new invariant decreases. This means that when we do that the maximal feasible value of S
cannot increase. So the entropy of the critical point of the Lagrangian for our new invariant
cannot increase as 3; does. However that critical point is just the Boltzmann distribution
qi(z;) o< exp(—L; fi(xi)), i.e., it is the MAP g; for original equality invariant, ¢; - f; = K;. So
the property that increasing [3; cannot increase the entropy must also hold for the original
equality invariant.
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S(gi) _ In(Zy,(8i))
g fi+ 3, 3, . (20)
Comparing with Eq. 73 in App. 9, we see that the quantity on the left-hand side
is essentially identical to the free energy of statistical physics.2! Accordingly,
we call it the free utility of the player.

Note that the free utility is a function of ¢; and f;, and is defined even when
¢; is not a Boltzmann distribution over values of f;. In contrast, the quantity
on the right-hand side of Eq. 20 is only a function of 3;. For fixed [;, that
quantity on the right-hand side of Eq. 20 is an upper bound on the free utility
of the player.?? For that fixed 3;, the free utility gap of player i is defined
as the difference between its actual free utility and the maximum possible at

that 4, 20
at player i’s associated equilibrium (Boltzmann) mixed strategy. Intuitively,

player ¢ “tries to” maximize free utility rather than expected utility, insofar as
it “tries to” achieve its MAP mixed strategy.

. That gap is zero — player ¢’s free utility is maximized —

(5) Finally, we present a restriction that simplifies our discussion below of
how the support of P(q | .#) covers Ay (Sec. 4.7 below).

We say that a particular ¢ is benign for utilities {u’} if for all players i, we
can write the associated expected utility ¢; - U;_i as K(Ué_j,ﬂi) for a B; > 0
with U;;i defined in terms of u! and g_; in the usual way. In this paper, for
simplicity we will only consider benign ¢’s. This means in particular that we
assume that for all players, their expected utility is not worse than the one
they would get for a uniform mixed strategy (which corresponds to infinite 3;).
While the analysis can be extended to allow negative 3; (where player ¢ adopts
a worse-than-uniform mixed strategy), there is no need for such considerations
here.

3.3 Effective invariants and the QRE

As discussed above, every product distribution ¢ can be specified by saying
that each of its marginalizations ¢; is an MAP prediction for some associated
“guessed environment” f; and ;. But not every g can be expressed this way
if we demand that the guessed environments f; for each player are their actual
environments. In other words, only for a subset of all ¢’s will it be the case that

Demanding such self-consistency in ¢ results in a coupled set of nonlinear
equations for ¢. This is the set of equations that specifies the QRE, Eq. 3.23 Tt

21Free energy has a different sign on the entropy. This just reflects the fact that players
work to raise utility whereas physical systems work to minimize energy.

22This follows from the fact that the g; that maximizes the free utility for our 3; is just the
associated Boltzmann distribution.

231n [27], Ué,i is called “a statistical reaction function”, and the set of coupled equations
giving that solution is called the “logit equilibrium correspondence”.
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was first derived in this manner, as the self-consistent solution to a set of MAP
inferences, in [11, 29, 25].

Note that there is no particular decision-theoretic significance to the QRE
derived in this manner. In particular, it is not the Bayes-optimal solution to
any inference problem. Nor is it derived as the MAP solution to any (single)
problem. Rather it is given by a set of MAP solutions, each for a separate
inference problem. There is one such problem for each separate player. We then
posthoc “tie together” those separate problems, by requiring that our solutions
to them are consistent with one another.

Unfortunately, such a two-stage process has no clear justification in terms
of Cox’s and Savage’s axioms. More generally, it is hard to formally justify the
approach of enforcing consistency among a set of separate inference problems
rather than considering a single aggregate inference problem. (Recall that the
inference is being done by the external scientist, and that that scientist is ex-
ternal to the system.) To address that single inference problem, we must use a
single invariant that concerns the entire joint system.

In such an alternative to the QRE’s posthoc “tying together” one analyzes
all players’ distributions simultaneously, from the very beginning. This means
that we analyze the distribution over full joint strategies that involve all the
players. In this approach, to get any particular player ¢’s distribution we would
marginalize the distribution over joint strategies, rather than (as in the QRE)
start with those marginal distributions and try to tie them together.

The natural invariant for this aggregate inference problem is the “aggregate
invariant” that g; - f; = K; Vi. However as shown below, the QRE is not even
the MAP of the posterior over the space of joint strategies under this invariant
(never mind being Bayes-optimal.) An analysis of this aggregate problem is the
subject of the next few sections. A discussion of the historical context of the
QRE can be found in an appendix.

4 Coupled players

Recall that the posterior is given by the prior and the likelihood. Since (for
both game types) we’ve chosen the prior, our next task is to set the (.#-based)
likelihood. We want that likelihood to have the same form as the likelihood
underpinning the CE of statistical physics: a Heaviside theta function that re-
stricts attention to a subset of all possible systems, with the distribution across
that subset then set by our prior (see the appendix). However as elaborated
below, the likelihood theta function appropriate for games is more complicated
than the one that arises in statistical physics. This is because there are mul-
tiple payoff functions in games, each with its own effect on the system’s theta
function, whereas there is only one Hamiltonian in a statistical physics system.

In this section we illustrate how to set the likelihood in a scenario where the
players may have knowingly interacted with each other before the current game.
(In the next section we use these results to address the case where the players
have not previously knowingly interacted.) In general those previous interac-
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tions are allowed to vary from one instance to another; the invariant restricting
our instances will also be what restrictsfg the possible previous interactions.

4.1 Invariants of human players

In general of course, . does not specify everything about our inference problem,
and in particular it does not specify the value of that which we want to infer.
Here what we wish to infer is the actual joint strategy of the players. (See
Sec. 2.3.) So the joint strategy is not specified by .#. Therefore a player’s
payoff is also not speciefied for any particular one of its moves, since that payoff
will depend on the moves of the other players in general; that payoff may vary
between instances.

Instead, here we stipulate that any player will try to maximize her expected
utility, to the best of her computational abilities, the best of her insights into
the other players and the game structure, etc.?? Intuitively, this means we as-
sume a “pressure” embodied in the distribution over ¢’s biasing the distribution
to have ¢; that achieve high values of Ué - q;- This pressure is matched by
counterpressures from the other players affecting U, 3.

What we consider invariant is that from one instance to the next player ¢
does not change, and therefore how insightful player ¢ is into the other players
(based on her previous interactions with them), how computationally powerful
1 is, etc., does not change. In other words, how well player ¢ performs, in light
of her (varying) environment of possible payoffs (i.e., in light of U?) is the same
in all instances. In short, “how smart” every player ¢ is does not change from
one instance to the next. As in the case of statistical physics though, here our
invariant need not specify precisely how smart each player is a priori, only that
how smart each of them is doesn’t vary from one instance to the next.

As an example, consider the situation where the players knowingly are re-
peatedly playing the game with each other, forming a sequence of games. Say
we are considering the distribution over joint mixed strategies ¢ at some fixed
(invariant) sequence index ¢. In this scenario it is an entire sequence of games
leading up to game t that constitutes “an instance of our inference problem”.
We must determine what is invariant from one instance of that problem to
another.

Note that in game t of any instance the players’ actual moves are indepen-
dent, tautologically. (This is reflected in having g be a product distribution.)
However in general the ¢ at ¢t will change from one instance to the next. In-
deed, consider any time ¢’ < t. At that time, in every sequence of games, each
player modifies its mixed strategy based on the history of move-payoff pairs
in that sequence for times previous to ¢/, i.e., each player tries to learn what
strategy is best based on its history and adapts its strategy accordingly. Since
the move-payoff pairs of that history are formed by statistical sampling (of the
joint mixed strategy), they will not be the same in all sequences. Accordingly,
in general the modification 7 makes to its mixed strategy at ¢’ will not be the

24This is not the case in situations like Allais’ paradox; see below.
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same in all sequences. Therefore the final joint mixed strategy ¢ will vary from
one sequence to the next.

As a result of this sampling, across the set of all instances (i.e., all sequences)
there will be some statistical coupling between the time ¢ mixed strategies of
the separate players. This means in particular that in general the time ¢t MAP
q, argmax, P(q" | invariant), is not a product of the individual time ¢ MAP g;,

Hargmaxq}P(qf | invariant) = Hargmaxq; /dqt_iP(qf,qt_i | invariant)
' i

K3

# argmax,P(q" | invariant) (21)

(This is in contrast to the case with independent players considered in Sec. 5).
Since the final ¢ varies across the instances, in general we can’t expect that
for each player i, its environment U? will be the same at the end of each sequence.
Indeed, even consider the case where play evolves to a Nash equilibrium at time
t. If the game has multiple such Nash equilibria, then in general which one
holds for a particular sequence of games will depend on the history of moves
and payoffs in that sequence. Accordingly, U? will depend on that sequence.

Formalizing all this means formalizing our invariant .# of “how smart” a
player is. Here we consider how to do this for type I game theory, where inference
is of q. The discussion for type II game theory proceeds mutatis mutandsi.

Consider just those instances of our inference problem in which player 4
is confronted with some particular vector of move-conditioned expected utility
values, U?. We say that that i is “as smart” in any one of those instances as
another if in each of them separately, on average, the move ¢ chooses has the
same payoff. In other words, how smart i’s is is the same in all of those instances
if i’s expected utility, ¢; - U?, has the same (potentially unknown) value in all
of them. We write that value as ¢;(U?). As an example, at a Nash equilibrium
€;(UY) = max,, U (z;) Vi.

Note how conservative this restriction on ¢; is. In particular, so long as
€:(U") < max,,U'(z;) Vi, then we are guaranteed that multiple g; satisfy this
restriction. This is true even if the game has only a single Nash equilibrium.

Our invariant is simply that the functions {¢;} are the same in all instances.
This invariant does not concern the joint choices (moves) of the players across the
instances (which is given by the z’s). Rather it concerns ¢, which is the physical
nature of the process driving the players to make those choices. However the
invariant does not specify that process. In particular it does not stipulate how
the players reason concerning each other. For example, it does not stipulate
how many levels of analysis of the sort “I know that you know that I know that
you prefer ...” any of the players go through (if any levels at all). All that
# stipulates is that certain high-level encapsulations of that decision-making,
given by the {¢;}, are the same in all instances.

As a result of this invariance, even though the moves {z;} of the players
are independent in any particular instance (since ¢ is a product distribution),
our (1) lack of knowledge concerning the set of all the instances might result in
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a posterior P(q | .#) in which the distributions {¢;} are statistically coupled.
(Recall that g reflects the players, and P reflects our inference concerning them.)

Note that for the entropic prior P(g) there is no statistical coupling be-
tween x; and z; in the prior distribution P(z). (Recall that for that prior,
P(z) = [dqP(z | q)P(q) must be uniform, by symmetry.) However the po-
tential coupling between the {¢;} means that in the posterior distribution, the
moves are not statistically independent (assuming one doesn’t condition on q).
Formally,

P(z; | .7) / dg; P(: | 4)Plg; | 7)

/ dg; 4:(x:)P(a; | 7) (22)

SO

[[P@: )= / da TTPlac| P, (23)

On the other hand, recall that
Pl )= [ daPia] ) [[ato) (24)

So if P(q | ) is not a product distribution, then in general P(z | .%) #
[L; P(z; | F), ie., in this situation P(z | .#) — which is the distribution
over joint moves reflecting our understanding of the system — is not a product
distribution either. In such a situation, to us, z; and x; are statistically coupled.

Such coupling also typically arises in the Bayes-optimal prediction for the
distribution over joint strategies. Indeed, say we adopt a quadratic loss function,
so that if we guess the joint distribution is ¢, when in fact it is ¢/, our loss is (¢ —
¢')%. Then given the posterior P(q | .#), the associated Bayes-optimal prediction
for ¢ — the prediction that minimizes our posterior expected quadratic loss —
is

I / dq qP(q | 7). (25)

This is the same as the joint mixed strategy given by Eq. 24. (This is not the
case for other loss functions.) Accordingly, our conclusion about coupling of the
{x;} holds for this Bayes-optimal joint mixed strategy.?®

Consider changing the cognitive process of some player j # i in way that does
not change ¢;. Also do not change anything concerning all the other players. Do
all this in such a way that how that player j chooses moves at time t changes,
but nothing else changes about j’s behavior. So in particular, for any fixed
vector U?, the g; that governs player j at time ¢ and is consistent with that

25Note the slight abuse of terminology; the moves of the players are statistically coupled
in this “joint mixed strategy”, which is why we do not write that Bayes-optimal distribution
over x as g but a p.
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U? will change.2® Now the distribution over possible ¢; at time t is based on
behavior of player ¢ and of other players for times ¢’ < . Since those factors are
unchanged by our change to g; at time ¢, so is the distribution over possible ¢;
then. Accordingly, the change in g; will in general change the expected utility of
player i at time ¢t. In other words, changing player j # ¢ will in general change
€;. This illustrates that our invariance is implicitly determined by the set of
players as a whole. This is in addition to its reflecting how the players have
interacted, the structure of the game, etc.2”

4.2 Specifying the function ¢;

Now in general for any player 4, our invariant doesn’t force all instances to have
the same vector U’. So to complete the quantification of how smart a player is
we need to specify the function ¢;. To do this we use a Gedanken experiment; we
consider how player ¢ would behave in a counterfactual “game against Nature”
inference problem. In that new problem we focus on just one player 4, fixing the
others. Formally, our invariant is expanded from that of the original problem,
to a new invariant .#’ that also include U®. Since the invariant still stipulates
that E(u?) = €(U?), having U? also invariant means that the expected utility
E(u') does not change between instances of this new problem.
Write the (potentially unknown) value of that invariant expected utility as
v;. Since we use the entropic prior over ¢; this new inference problem has the
usual entropic posterior. Also as usual, the MAP ¢; is given by a Boltzmann
distribution: ‘
gi (@) ox V@) (26)

where the Lagrange parameter going into b; enforces the constraint, namely that
q; - U = v;. (See Sec. 3.2 for the more general way that this constraint arises
and some useful equalities relating b;, v;, etc.)

We must now consider how b; changes as U® changes. The lowest order case
is where b; is a constant, independent of U?. This means that for real-valued b;,
€; is identical to the Boltzmann utility K; discussed in Sec. 3.2, with U’ playing
the role that f; does in the definition of Boltzmann utility, and b; playing the
role of §;. Just as we extend the domain of definition of K;(.) to include co, we

26We mean “consistent” in the sense that even though qj+i has changed, it is still true that
Vi) = [del il asilal)
= /d:p;-dz/i{iyj} u’(:pi,x;-,zL{i‘j})qj(z;)q_{i,j}(z'i{mv}).

27"Note how problematic it would be to try to encapsulate our invariance in a traditional, non-
Jaynesian “bath”-based approach to statistical physics. In such an approach, the invariants
are the sums, across both the system under consideration and an external “bath”, of certain
physical quantities. In other words, the aggregate amount of those quantities across the system
and the external bath is taken to be conserved. For example, the CE arises if one takes the
aggregate energy to be conserved. It is not at all clear how one could express our invariants
as the values of such conserved quantities.
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do the same for €; and for ¢: For b; = 0o, ¢ is the distribution that is uniform
over the set argmax,, U’(z;), and zero elsewhere.

Below we will use the shorthand ¢*(z) = [], ¢/ (;) where for each i the U’
arising in the definition of ¢} is understood to be based on the ¢*, (i.e., each U*
means Ué*). So the definition of ¢* reflects coupling between the player’s mixed
strategies (though not necessarily between their moves): a change to q; for
some particular j in general will modify the strategies g; 2j- 4" is the Quantal
Response Equilibrium (QRE) solution, discussed in Sec. 3.2. In general, for
any particular game and 5, there is at least one, and may be more than one
associated ¢*. This follows from Brouwer’s fixed point theorem [27, 29].

As a point of notation, the expression .#; is defined to be the invariant that

Vi,qi - U, = K(U. ,b;), where it is implicitly assumed that b = 0. For any
such b there is always at least one ¢ that satisfies .%; (e.g., the QRE).

4.3 The impossibility of a Nash equilibrium

We now consider the second interpretation of “equilibrium joint mixed strategy”,
not as the Bayes-optimal ¢ given .#, but rather as P(z | .#). We do this for the
coupled players invariant, ..

As discussed above, the advantage of this second interpretation of “equilib-
rium” is that it does not depend on the loss function of the external scientist.
Rather it only depends on properties of the game and the players. Unfortu-
nately, as elaborated here, in some situations the joint mixed strategy P(z | .#)
cannot equal a Nash equilibrium of the underlying game. So under this inter-
pretation, a Nash equilibrium is impossible.

To illustrate this, say that (the support of) P(q | ) is restricted to the Nash
equilibria of the underlying game, so that the players are perfectly rational. (See
Sec. 4.7 below.) Say that there are multiple such equilibria, written ¢', ¢, ...,
with P(q | &) = 37, a76(q — ¢’). So the a’ form a probability distribution over
the equilibria. Since the entropic prior extends over all ¢ € Ay, in general none
of the a* will equal zero exactly.

Since the equilibria are all product distributions, using Eq. 24 we can write

P|7) = Y o [[d(x) (27)
7 k

so that

P(z; | .7) /dx,l- Pz |.7)

>l ). (28)

Consider the case where the Nash equilibria are not interchangeable, so P(q | .#)
is not a product distribution. This means that P(xz | .#) is not a product
distribution in general, so that the players appear to be coupled, to us. (See the
discussion just below Eq. 24.)
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At an intuitive level, such coupling is analogous to the consistency-among-
players coupling that underlies the concept of a Nash equilibrium. However
because it mixes the Nash equilibria with each other, in general the sum in Eq. 28

is not a best response mixed strategy for the product distribution [, , P(z; |
A

#). Formally, p*(z;) & P(x; | #) does not maximize the dot product
J

Similarly P(z; | -#) is not a best-response mixed strategy for P(z_; | ).
So when the underlying game has multiple non-interchangeable equilibria, then
even if the players are perfectly rational, in general we will not predict distribu-
tions governing the moves of the players that are best-response mixed strategies
to each other.

Example: Say we have a team (common payoff) symmetric game involving
two players, each having a move space {A, B}. Let the shared utility function
be u(A, A) = 2,u(A, B) = u(B, A) = 0,u(B, B) = 1. This game has three Nash
equilibria: (4, A), (B, B), and the mixed strategy where each player makes move
A with probability 1/3. The first two of those ¢ have entropy 0 (they are delta
functions). The associated value of the entropic prior, exp(aS(q))/Z (), is just
[Z(a)]~!. The last Nash equilibrium has entropy In[3] - 2/3In[2].

If we define w(a) £ exp(a{ln[3] — 2/3In[2]}), then the prior probability of
the first two (pure strategy) Nash equilibria are 1/[2 + w(«)], and the prior
probability of the last (mixed strategy) Nash equilibrium is w(a)/[2 + w(a)].
Since all three equilibria have the same likelihood (namely, 1), these prior prob-
abilities are also their respective posterior probabilities, P(q | .#), i.e., they are
the three values of a?. Accordingly,

Ple=@A417) = 2+11u(a)+(2—1|—0w)[%]2
_ 9+ w(a)
902 + w())
Pe=BB1A) = st il
9+ 4w(a)
~ 92+ w) (30)
and
Plz=(A,B)|#) = Plz=(B,A)|.7)
2w
GO By

Not only is this distribution P(z | .#) not a Nash equilibrium; neither player
i plays best-response to P(z_; | .#). In fact, P(z | .#) is not even a product
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distribution in general. (To see this, evaluate the marginals of P(z | .#) for the
two players, and compare the product of those two marginals with P(x | .%) .)

Note that these conclusions do not depend critically on our choice of ¢;, or
even on our choice of encapsulating .# in terms of such functions ¢;. (After all,
we're explicitly allowing the case where P(q | .#) is restricted to Nash equilib-
ria.) Rather it comes from the fact that our prior allows non-zero probability
for all of the Nash equilibria.

4.4 The QRE and ¢

Unlike the usual motivation of the QRE, the motivation for our choice of ¢;
does not say that ¢; must be a Boltzmann distribution. It does not say that the
probability distribution over possible ¢; is a delta function about a Boltzmann
distribution g;. Rather it says that ¢}, the most likely g; for the single-player in-
ference problem, is a Boltzmann distribution. It then uses that fact to motivate
a functional form for €; in the multi-player scenario. Here we only assume that
the relation between E,(u’) and U’ given by that functional form is consistent
with ¢; = ¢f. In general the invariant E,(u') = €;(U%;b;) holds for many ¢; in
addition to the Boltzmann distribution.

Indeed, fix ¢, and consider any i and the associated U, ’_ Recall that we are
restricting attention to benign ¢’s (cf. the discussion at the end of Sec. 3.2). So
no matter what it is, our ¢; is consistent with our invariant for that Ué,ﬂ for
some b;. Since this is true for all 4, any ¢ is consistent with our full invariant
for some b. Furthermore, for any finite «, the support of the entropic prior is
all Ay. This means that every ¢ has non-zero posterior probability P(q | .7})

for some b.

In contrast not every ¢; is a Boltzmann distribution, i.e., not every g¢; is
part of a QRE. In other words, to assume a system is in a QRE is to make a
restrictive assumption about the physical system ¢, an assumption that may or
may not be correct. This is not the case with our invariant.

Finally, it turns out that the QRE can be viewed as an approximation to the
MAP prediction for our .#. A detailed discussion of this is presented in Sec. 4.6
below.

4.5 The MAP ¢

Given our invariant, our likelihood is

P(7]q) = H(?(Eq(ui)*ei(Ué))

H5(qi U = e(Uy)). (32)

Recall that with the canonical ensemble the likelihood stipulates a linear con-
straint on the underlying probability distribution. In contrast, due to the non-
linearity of €;, here the likelihood stipulates a non-linear constraint on g.
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As usual, if we wish we can distill the associated posterior into a single
prediction for g, e.g., into the MAP estimate. Naively, one might presume that
q* is that MAP estimate. After all, ¢* respects our constraints that E,(u’) =
ei(Ué) Vi, and it maximizes the entropy of each player’s strategy considered in
isolation of the others. However in general ¢* will not maximize the entropy
of the joint mixed strategy subject to our constraints. In other words, while
MAP for each individual player’s strategy, in general it is not MAP for the
joint strategy of all the players. The reason is that setting each separate ¢; to
maximize the associated entropy (subject to having ¢ obey our invariant), in a
sequence, one after the other, will not in general result in a ¢ that maximizes
the sum of those entropies. So it will not in general result in a ¢ that maximizes
the entropy of the joint system.

Proceeding more carefully, the MAP estimate of the mixed strategy ¢ is
given by the critical point of the Lagrangian

ZL(g,{N}) = S(g) + Z i —a(U") (33)

where the \; are the Lagrange parameters enforcing the constraints provided
by the likelihood function of Eq. 32. The critical point of this Lagrangian must
satisfy

0%
0 = 0qi(z;) j
= —1—Inf[gi(x;)] + )\iE<ui | i) + Z)\j [E(u] | i) = %((SZ))]

J#i
= —1—Infgi(z)] + NE" | 2;) +

B | ) — 0e;(U7) oUI (z)
2 P [ 5 e

= —1—In[gi(z;)] + NE(u" | z;) +

Y NIE@W | @) —/d JSEU]](( ))E(ujl%ﬂfj)]- (34)

J#i

Accordingly, at the MAP solution, for all players i,

Be;(UT)

NE (W @) +32 4, A B @)~ [ da; 309 (a )Eq(“j\wz‘xrj)]

qi(z;) (35)
This is a set of coupled nonlinear equations. The solution will depend on
the functional form of each €;. The form being investigated here is Boltzmann

utility functions, so we must plug that into Eq. 34 to evaluate g;jj(([i J_)). After
J
doing that, interchange the order of the two differentiations, to differentiate with

respect to UJ(xz;) before differentiating with respect to b;. Carrying through
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the algebra one gets

95U )+ by {09 () — By (U9))]

U (x;)
= ()l + b{B, (& |zj) = Eg: g (u))}] (36)

j
We must now plug this into the integrals occurring in Eq.’s 34 and 35. Each
such integral becomes

06(7) i g o
/da:J 6Uj(1:j)Eq(u | x4, x5)

= /d%‘ q; () Eq(w! | ai,25) [ + bi{E; (W |25) = Egzq_,(u)}]
(37)

Together with the constraints { E,(u’) = €;(U7)}, Eq. 35 now gives us a set
of coupled nonlinear equations for the parameters {\;} and the ¢;. The solution
to this set of equations gives our MAP g.

4.6 The relation between the MAP ¢ and the QRE

Ultimately the only free parameters in our solution for the MAP ¢ are b. The
QRE solution ¢* is also a set of coupled nonlinear equations parameterized by
b. In general there is a very complicated relation between the MAP ¢(z) and
¢*(x), one that varies with b (as well as with the {u?}, of course). In particular,
in general the two solutions differ.

Intuitively, the reason for the difference between the two solutions is that
each player i does not operate in a fixed environment, but rather in one con-
taining intelligent players trying to adapt their moves to take into account 4’s
moves. This is embodied in the likelihood of Eq. 32. In contrast to that like-
lihood, the likelihoods of the QRE each implicitly assume that the associated
player i operates in a fixed environment.

Formally, if we make a change to g;, then the likelihood of Eq. 32 will induce a
change to ¢g_;, to have the invariant for the players other than ¢ still be satisfied.
This change to ¢_; will then induce a “second order” follow-on change to ¢;, to
satisfy the invariant for player i. This second-order effect will not arise in the
likelihood associated with the QRE ¢, which treats the other players as fixed.

Note that with the likelihood of Eq. 32 the second-order effect will induce a
further change to g_;, to ensure the invariant is still satisfied, which will then
cause a third order change to ¢;, and so on. This back-and-forth is a direct
mathematical manifestation of the “I know that you know that I know that you
prefer ...” feature at the core of game theory. This is the phenomenon that
distinguishes game theory as a subject from decision theory. The difference
between the QRE and the MAP ¢ is an encapsulation of this distinguishing
feature.
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There are other ways to view the intuitive nature of the relationship be-
tween the QRE and the MAP ¢. For example, in deriving the MAP ¢ one
follows standard probability theory and multiplies likelihoods concerning the
separate players to get a likelihood concerning the full joint system. The mode
of (the product of the prior and) that joint likelihood gives the single most likely
solution to our inference problem. In contrast, the QRE ¢ starts by separately
finding the most likely solutions to each of many different inference problems
(one problem for each player). It then multiplies those solutions concerning
different problems together. It is not apparent what justifying formal argument
(i.e., one based on Savage’s axioms) there is for taking that product of solutions
of different problems as one’s guess for the solution to a single joint problem.

The mathematical relationship between the QRE and the MAP ¢ is a com-
plicated one. Here we consider the simplifying approximation that under the
integral of Eq. 37, we can equate g(x) and ¢*(x). In other words, assume we
can use the mean-field approximation within integrands. Exploiting this, we
can evaluate the integral in Eq. 37:

_aﬁj(Uj) j ) )
/dxj an(Z‘j)Eq(u ‘$1,$])

= /dxj (4 (25) Eq(u? | @iy 25) +
G (@) Bg (W | g, 2))bi{ Eg- (| ) — Eg- (u”)}]
= B,(v | @) —
bj[Eq*(uj)Eq(uj | z;) — /d:vjqj(xj)Eq*(uj | ;) Eq (u? | xj,x;)]
(38)

where we have used the fact that ¢ is a product distribution. Plugging this into
Eq. 34 gives

0 = —1 — In[gi(z:)] + NE,(u’ | ;) +
D N[ Ege (0 Ege (w | 27) —
j#i

[dosa @B (0l ) By d | 2y,00] - (39)

as our equation for ¢; in terms of ¢_, and ¢*.
So consider the situation where for all j,

Ege(u))Ege (u | 25) = /d%q*j(fﬂj)Eq*(uj | 2j) g (u | aj,2:)]. (40)

In this situation, in light of Eq. 35, we recover for the MAP ¢ the very QRE
solution that we assumed when we made the mean-field approximation, where
b; = A\; Vi. Accordingly, if the QRE solution obeys Eq. 40, it is an MAP solution.

34



If the QRE only approximately obeys Eq. 40, then the exact MAP solution can
be found by expanding around the QRE via Eq. 39.

The difference between the two sides of Eq. 40 is a covariance, evaluated
according to ¢, between the random variables Eg«(u’ | xj,2;) and Eg-(u/ |
xj).28 Comparing Eq.’s 37 and 35, this provides the following result concerning
our mean-field approximation:

Theorem 1: The QRE ¢* is the MAP of P(q | .#) with the vector equality
A = b iff Vi,

D (6;)*Covy: [By- (0 | @), 1), Ege (W | ;)]
i

is independent of xz;, where Cov is the covariance operator:

Cova(w) b)) = [ dypwabw) ~ [ dypwiat) [ dyp(e)bio)

Particularly for very large systems (e.g., a human economy), it may be that
Eg(u! | zj,2;) = Eg=(u? | 2;) for almost any 4, j and associated moves z;, z;. In
this situation the move of almost any player ¢ has no effect on how the expected
payoff to player j depends on j’s move. If this is in fact the case for player i and
all other players j, then the covariance for each j, z;, z; reduces to the variance
of Eq(u? | ;) as one varies x; according to g;.

This variance is given by the partition function:

Varg: (Bg- (W | 25)) = Var, (UZ?)
oPn(Zy, (1)

5 |b.=b.- 41

a(b;)g | =03 ( )
In particular, for b; — oo — perfectly rational behavior on the part of agent
j — the variance goes to 0. So if every i is “decoupled” from all other agents,
then in the limit that all such agents become perfectly rational, the expression
in Thm. 1 generically goes to 0. (The bj-dependence in the covariance occurs
in an exponent, and therefore generically overpowers the (b;)? multiplicative
factor.) So the QRE approaches the MAP solution in that situation.

On the other hand, if the players have bounded rationality, their variances
are nonzero. In this case the expression in Thm. 1 is nonzero for each i, x;.
Typically for fixed ¢ the precise nonzero value of that variance will vary with x;.
In this case, by Thm. 1, we know that the QRE differs from the MAP solution.

There are many special game structures (e.g., zero-sum games) in which one
can make some arguments about the likely form of the sum in Thm. 1. An
elaboration of those arguments is the subject of ongoing research.

28Note that that second random variable is just the average (according to ¢}) of the first
one. So we can rewrite the covariance another way, as a covariance evaluated according to

q; (z};)q; (}), between the random variables Eg= (ud | o', z;) and Eg (u? | z’, ).
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4.7 The posterior ¢ covers all Nash equilibria

Not all ¢ can be cast as a QRE for some appropriate b. So in particular,
a ¢ that occurs in the real world will in general differ, even if only slightly,
from all possible QRE’s. This can be viewed as a shortcoming of the QRE (a
shortcoming that applies to all equilibrium concepts with a sufficiently small
number of parameters).

Now as b — 0o, the QRE reduces to some mixed strategy Nash equilibrium.
Different sequences of the b going to the infinity vector can lead to different
Nash equilibria. However in general starting from the point where all b; = 0
and continuously increasing the components of b can only lead to one particular
equilibrium, and other Nash equilibria are not the limit of such a sequence [27].
This too can be viewed as a short-coming of the QRE.

However from the perspective of PGT, there is far more to the posterior
distribution specified by a particular vector b than some single ¢ chosen using
that posterior, be that ¢ the associated Bayes-optimal ¢, the MAP ¢, or an
approximation to the MAP ¢ like the QRE. In this, the potential impossibility
of one particular sequence of such ¢’s approaching some particular one of the
game’s Nash equilibria is not necessarily a reason for concern.

To formalize this we start with the following result:

Proposition 1: Define Q(b) £ {q € Ax : Vi, P(g; | ) > 0 for some v = b}
Let B be some sequence of b values that converges to_‘o_é, i.e., such that for all
b € B having no infinite components, 3 b € B where b’ = b. Then all members

-,

of N5 Q(b) are Nash equilibria of the game.

Proof: Hypothesize 3 G € HEGBQ(Z;) which is not a Nash equilibrium. Then 3 ¢
such that U, [17;,' is not constant valued. In addition, we know that ¢; - U;Li =v; <

maxgy, U, éi (2;). However recall from Sec. 3.2 that if U, 371_ is not constant-valued,

the Boltzmann utility K (Ugﬂ_, .) is a monotonically increasing bijection with

Tde T WAy, UZ_(x;)). Since v; falls within

that range, this means that we can invert K(, U, g ) to get a unique finite value

—i

domain [0,00) and range |

b; that is consistent with §. Accordingly, P(S; | G) is non-zero only if b; = bi,
and therefore so is P(q | .%5).

However by definition ¢ must be a member of Q(b) for all b in the limiting
sequence. That means in particular that it must be a member of Q(l;’ ) for some
b where b} > b;. But by definition, all members ¢ of Q(b') have P(q | Iz) >0
for some b such that b; > b, > b;. Since we know P(q | ) is non-zero only if
b; = b;, this means that § ¢ Q(g'), contrary to hypothesis. QED.

Conversely, every ¢ has a non-infinitesimal posterior probability (density),
for some (potentially infinite) b that specifies that posterior. More formally,
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Proposition 2: For any benign ¢ € Ay there is a unique b and associated
invariant .%; such that P(q | %;) # 0. For that b, for all ¢ € Ay,

Plq| %) —a
Py = )

where « is the exponent of the entropic prior.

Proof: First recall that any ¢ has non-zero posterior probability P(q | .%;) for
some g, assuming finite entropic prior constant «. (See Sec. 4.3.) So to prove
the first part of the proposition we must establish the uniqueness of that b.

Consider any i and the given ¢. Say ¢; - U}_, = v; # max,, U} _ (2;). This
means that U, é—i is not the constant function that is independent of its argument.
Now recall from Sec. 3.2 that for any such v; and fixed non-constant U?, there
is always a unique b; € [0,00) such that K;(b;) equals v;. On the other hand,
as explained in the discussion in that subsection, if v; = max,,U!_ (z;), then
regardless of whether Ugﬂ_ varies with its argument, b; = co. So there is a unique
b; consistent with ¢, which we write as b]. Since this holds simultaneously for
all i, the entire vector b* with components {b?} is unique.

This means that the likelihood P(.#. | ¢) = 1. On the other hand, P(.%;,
q¢') <1 for any ¢’. Accordingly, the ratio in the proposition is bounded above
by the ratio of the exponential prior at ¢ to that at ¢’. However the ratio of

¢*5(@") between any two points ¢” is bounded below by %. QED

In particular, this result holds for Nash equilibrium ¢; such equilibria arise for
b = 5 The relative probabilities of those Nash ¢ are given by the ratios of
the associated prior probabilities, i.e., by (the exponential of) the associated
entropies, S(q). This reflects our presumption that it is a priori more likely
that the adaptation/learning processes that couple the players results in a Nash
equilibrium with broad ¢ that that it results (for example) in a “golf hold” pure
strategy ¢. (Generically, such golf hole solutions are more difficult to find for
any broadly applicable learning process.)

Prop. 2 also holds for any particular ¢ infinitesimally close to one of the
Nash equilibria. In this sense, the posterior probability is arbitrarily tightly
restricted to any one of the Nash equilibria for some appropriate b.

The picture that emerges then is that Vl_;, 3 proper submanifold of Ay that
is the support of the posterior. There is no overlap between those submanifolds
(one for each b), and their union is all of Ay, including the Nash equilibria
¢’s (for which b = 30). Those Nash equilibria are the limit points of those
submanifolds (in a sequence of increasing l;)

Within any single one of the submanifolds no ¢ has too small a posterior (cf.
Prop. 2). This is because all ¢ within a single submanifold have the same value
(namely 1) of their likelihoods. Accordingly, the ratios of the posteriors of the
¢’s within the submanifold is given by the ratios of (the exponentials of) the
entropies of those ¢’s.

37



Finally, consider the case that the submanifolds get a unique maximum as
b — oo. This means that the mode of the posterior — the MAP ¢ — necessarily
goes to a single one of the Nash equilibria in that limit. In this sense, “only
one Nash equilibrium is picked out by that limit”. In particular, this limiting
behavior holds for the QRE approximation to the MAP ¢. As mentioned, this
has been seen as a problematic aspect of the QRE equilibrium concept. However
from the prospect of PGT there is nothing untoward about this behavior. After
all, all of the Nash equilibria have non-zero posterior in that limit (cf. Prop. 2);
it just so happens that the QRE ends up at a single one of those equilibria.

4.8 Alternative choices of .¢

Of course, one can always design “learning” algorithms for players to follow in
such a way that our assumed invariants don’t hold. After all, in the extreme
case you can design “learning” algorithms that are intentionally stupid, giving
higher probability to moves with lower expected utility. Less trivially, there are
many algorithms that are of interest in the game theory community even though
they would never be considered by anyone in the machine learning community
applying learning algorithms to real-world problems (e.g., ficticious play). It
may well be that such algorithms don’t obey the assumed invariants exactly for
some {U%}.

However this issue also obtains, at least as strongly, for alternative encapsu-
lations of rationality like Nash equilibrium, trembling hand, quantal response,
etc. It is trivial to design “learning algorithms” that guarantee that those equi-
libria cannot arise. More generally, in all statistical inference — in other words,
in all of science — any formalization of invariants may well have some error. This
is even true in statistical physics, and is an intrinsic feature to any predictive
science.

All of this notwithstanding, there are a number of alternative choices of ¢; to
the one considered here that should be investigated in depth. To give a simple
example, the .# considered here is only a “lowest order” choice for an invariant.
In particular, as mentioned above, our choice of .# assumes b; is independent
of U’. A more sophisticated analysis than can be fully developed here would
consider possible couplings between b;’s and U%’s; in this paper b;’s and U’s are
independent.

However one does not need to couple b;’s and U'’s to get reasonable alter-
native choices of ¢;. For example, due to the U’-independence of b; with our
, whatever b; is, for some ¢ the associated likelihood P(%; | q) = 0 (just
like whatever the temperature of a physical system, some phase space distribu-
tions are incompatible with that temperature). To avoid this, in many scenarios
we might want to allow how smart a player ¢ is to vary from one instance to
the next, even without considering detailed mathematical structures relating
variations in b; with those in U®.

One way to do this would mean allowing b; to vary in an U'-independent
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manner, with only its average value fixed.?? This simple generalization of .# can
be accommodated by switching the analysis to involve type II games. Although
the details of that analysis (like all other details of type II game theory) is
beyond the scope of this paper, it is worth making some broad comments on it.

That type II analysis starts by extending the definition of an environment
vector to type II games in the obvious way: indexed by ¢}, the type II environ-
ment is defined by

U @) 2 [ddd m ) a3
so that the expected value of u’ is given by

m-UL | = /dqim(qi)Uf},i(qé)
= Eﬂ'iyﬂ'—i(ui) (44)

The analysis also extends the definition of K(.,.) to type II games in the obvious
way: K(U}‘Tﬂ_ , B;) is what 7; - U}'Li would be if 7; were the associated Boltzmann

distribution, m;(q}) o exp(B;U%_ (q})).
The new invariant would then be that for all 4,

m UL, = KU, B;) (45)

This invariant allows any g; to occur, thereby allaying the potential shortcoming
with the invariant this paper focuses on. It is now certain 7; that are excluded
rather than certain ¢;.

To motivate our next alternative for the invariant .#, consider the distri-
bution induced by q_;(z_;) over player i’s move-specified utilities u’(z;,.) (one
such distribution for each x;),

(i) =) = / dr' g i(a )o(u— (e ai)).  (46)

 implicitly assumes that those aspects of i’s behavior that it is safe for us to
presume are only those that involve the first moments of these distributions,

U. (%) = /du Pqii(ui(xi,.) =u)u

/dx’_i q_i(x’)u(xs, 2" ;). (47)

29Indeed, in practice each b; is at best loosely known. So formally speaking it is a random
variable with its own distribution, and so even within a type I game it must be marginalized
out to get our posterior P(q | #). This type of random variable is known as a “hyperpa-
rameter” [44, 43]. (A more common example of a hyperparameter is the typically unknown
width of a Gaussian noise process that corrupts some data.) In particular, in almost all of
this paper we are implicitly assuming that the posterior over each b; is quite peaked, so that
in our analysis we can simply set b; to a constant, albeit an unknown one.
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In this it simply emulates conventional game theory.

However in many real-world coupled-players scenarios the higher moments,
reflecting the breadth and overlaps of the distributions over u®(x;,.), will have
a major impact on our inference of ¢;. Intuitively, if those distributions — each
a function purely of ¢_; — maintain the same mean but get broader with more
overlap between them, that will increase the variability of what inferences i
makes concerning those means and their linear ordering. (For example, that is
the case if ¢ makes its inference of those means based on empirical samples of
the distributions.) This will make our associated distribution over g; broader
— there are more ¢; that we can conceive of ¢ arriving at. Similarly, such
broadening of the distributions over the u’(z;,.) would often be evident to i.
That might make ¢ realize it can have less confidence in its inference of the
ordering of the means of those distributions. In such a situation, many real-
world players ¢ would become more conservative in formulating their mixed
strategy, ¢;. So not only might the distribution over ¢; get broader, but it may
also shift, if ¢_; changes to cause this kind of broadening of the distributions.

To be more quantitative, say the variances of the U?(z;,.),

Vo (zi) = {/ dr_i q_i(w—i)[u'(z;, 2=} — [Ug_ (z)]*, (48
are increased, and that the overlap between the distributions over each u;(z;,.)
(measured for example via Kullback-Leibler distance between those distribu-
tions) also are increased. Then there is often increased uncertainty on our part
about the relationships between i’s sample-driven preferences among the z;.
This often means we are less sure in our inference of what i’s current mixed
strategy is, which means our posterior over ¢; should get broader.

In addition, under such broadening in the u‘(z;,.) there is increased uncer-
tainty about what 4’s best move would be for the actual move z_; that will be
formed by sampling g_;(z_;). Typically this means that the information that i
has gleaned via its previous interactions with the other players is not as helpful
to ¢ for determining its best move for the current game. Intuitively, when these
distributions are broader ¢ faces worse signal-to-noise in discerning the relation
between the U?(x;) based on limited data. This will often manifest itself by
changes to what mixed strategy ¢ is most likely to adopt.

A standard illustration of both of these effects arises if one compares two
extreme scenarios. The first is the “US economy game” that any particular US
citizen i repeatedly engages in with the 300 million other human players in the
US. The second is a simple game against Nature that ¢ repeatedly engages in
where there is no variance in Nature’s choice of move. Our inference of ¢; is
far easier in the second scenario. Similarly, typically ¢ will have an easier time
discerning its best move in the second scenario.?°

One approach to incorporate such effects would be to have the set of all
{V¥(z;)} (running over i as well as the associated z;) and overlaps between

308ee [11, 53, 29, 15, 54, 55], and references therein to “Collective Intelligence” for a discus-
sion of how this second type of effect can be addressed for mechanism design and distributed
control.
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the distributions over the {u’(x;,.)} help specify b. Such an approach could
obviously address the second of the effects we're concerned with, involving how
much information ¢ has managed to glean concerning the other players. It is
not a fully satisfactory approach to addressing the first effect however. This
is because once b is set — however that is done — some q are excluded, i.e.,
some ¢ have posterior probability equal to 0. Typically to change b to allow
those previously excluded ¢ — and thereby broaden the distribution over g;
— the Bayes-optimal (or MAP) ¢ also changes. Moreover, such a modification
invariably excludes some ¢ that were previously allowed (see Sec. 4.7). Instead
what we want is our increase of the breadth of the posterior over g to allow
previously excluded ¢, while still allowing all ¢ we did earlier.

The exclusionary character of the posterior over ¢ that is causing this diffi-
culty can be removed by casting the analysis in terms of type II games rather
than (as in the exposition above) type I games. After all, in general the 7 that
obeys the conventional type II game invariant has support extending over all ¢
(cf. Eq. 45). A detailed exploration of how to use type II games to incorporate
the effects of the {V*(z;)} and overlaps between the {u‘(z;,.)} into our posterior
is beyond the scope of this paper however.

The discussion so far has focused on variants of .# that are at most loosely
based on empirical data. Those variants incorporate none of the insight of
behavior economics, prospect theory, or behavioral game theory [49, 50, 56, 48].
Crucially important future investigations involves incorporating that work, and
more generally the entire field of user-modeling and knowledge-engineering, into
our choice of 7.

It is worth noting that there are alternative .#’s that don’t involve the nu-
meric values of the u%’s, but rather only require that each u* provides an order-
ing over the ¢q. The idea here is to consider what is invariant if i stays “just as
smart”, while U? undergoes a non-affine monotonically increasing transforma-
tion, and ¢’ changes accordingly. For example, one might argue that ¢; would
be “just as smart” after such a transformation if the fraction of alternative ¢,
such that ¢} - U* > ¢; - U’ is the same before and after the transformation. For-
mally, this would mean that [dg, ©(U* - [¢; — ¢}]) is a constant, rather than
(as in the choice considered in this paper) U® - ¢;. Intuitively, under this choice,
“how smart” 7 is reflects how good she is at ruling out some of the candidate
q; as inferior to the final ¢; she uses.3! This formalization of how smart i is is
essentially identical to what is called intelligence in work on Collective Intel-
ligence [57, 54, 58].

Ultimately, to use first-principle reasoning to derive a predictive game theory
of real-world humans (i.e., to settle on a particular choice of the form of .#), we
should start with evolutionary game theory and related disciplines. After all, it
is in our evolutionary history that the biases in human behavior were generated.
So it would be first-principles reasoning in that domain that (hopefully!) could

310ne obvious variation of this measure of how smart i is is to replace the uniform measure
in the integral [ dg] o' [q— qﬂ) with a non-uniform one, for example emphasizing those ¢/
having larger dot product with U*. A related variation would replace the Heaviside function
in the integrand with some smooth increasing function, e.g., a logistic function.
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be used to derive those behavioral biases. Once one has derived those biases,
they would then be incorporated into the likelihood function of PGT. This would
be the chain of first-principles reasoning one would ultimately like to follow to
derive a fully-justified first-principles PGT. As an alternative, one could short-
circuit this process, and use behavior game theory, user-modeling, and the like to
set that likelihood empirically. Both approaches are the subject of future work;
here we are content to use “introspective” arguments like those of conventional
game theory to drive our reasoning.

5 Independent players

5.1 Basic formulation

When the players have never previously knowingly interacted, there is no sta-
tistical coupling between the associated mixed strategies, {¢;}. In this case
the setup for coupled players (Sec. 4) does not apply. Instead we must sepa-
rately specify likelihoods for each of the players. The joint likelihood is then the
product of those separate likelihoods.

Here for simplicity we consider a game of complete information, so that every
player knows the move spaces and utility functions for all players. Intuitively,
those players are not just unaware physical particles, without any “goals” that
they are “trying” to achieve. Rather each is a reasoning entity, trying to max-
imize its own utility, and it knows the same holds for the other players. This
results in the “I know that you know that I know that you prefer ...” common
knowledge feature that lies at the core of many views of game theory.3?

Intuitively, this overlap in knowledge among the players acts as a “virtual
coupling” between the players. However it is not a formal statistical coupling.
After all, as mentioned above, P(.# | q¢) = [[, P(.# | ¢;) for our independent
players invariant .#. Therefore (for an entropic prior) the posterior distributions
over mixed strategies are statistically independent:

P(q|¥) = HP(qi | 7). (49)

Given this independence, how do we capture the “virtual coupling”, so crucial
to noncooperative game theory, in the independent-players invariant .#7

To answer this, concentrate on some particular player i. As a surrogate for
virtual coupling, say we had a game of actual coupling, as in Sec. 4. That would

328ee [59] for a fine-grained distinction between such “common knowledge” and “mutual
knowledge”; such distinctions are not important for current purposes. Also see [60] for related,
qualitative discussion.
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set up a distribution over the joint moves of the players other than ¢,
P ;|5 = / dz P(al, 2! ;| 5)
— [ drlda a(ala’ )P | 5
= [l [ astatel 0P 2

s [dgaia ) [Tt U - 4 0)  (50)
J
where the subscript ¢ on the invariant indicates it’s the invariant for a counter-
factual coupled players scenario, a’ is an associated entropic prior constant for
player ¢, and each 6;— is an associated Boltzmann utility function, with (implicit)
Boltzmann constant bj.

Now if player ¢ makes move z;, and the remaining players make move x’_,
then the utility for player i is u’(z;,2";). Accordingly, if the distribution over
z’_, were actually given by Eq. 50, then the expected utility for player i for
making move z; would be

Ui(zs) 2 /dx'_i Wiz, 2 )P, | )

J daidq ' (@i, a)q-o(@) [T, e $9)3(g; - Uj — €4(U7))
Jdq T1; e 5@)é(q; - Uj — € (Usg)

(51)

Note that U¢ implicitly depends on an associated value a’, as well as on the
values {0} parameterizing the set of functions {€}}.

Say that in choosing its move player i assumes that its actual utility U? is
well-approximated by U for some appropriate a’ and {b}. This means that the
reasoning of player i reflects the “I know that you know ...” common knowledge
feature of game theory; it makes its move under the presumption that the
counterfactual coupled players scenario gives a good approximation to its actual
environment. With this approach, there is no infinite regress difficulty like that
underlying other approaches to the issue of common knowledge. (This reliance
on counterfactual coupling to formalize that common knowledge feature can be
viewed as an alternative to approaches like Aumann’s epistemic knowledge [61].)

Note (as discussed just below Eq. 24) that pguea = [dg qP(q | £.) is
the Bayes-optimal distribution over joint moves under quadratic loss and the
invariant .#.. So the distribution P(x_; | .#.) underlying U! is the same as the
distribution induced by sampling that single Bayes-optimal distribution. Also
recall that pguaq(z) is not a product distribution; under it the moves of the
players are not statistically independent. So we are modeling every player ¢
as though she achieves a certain performance level for a counterfactual game
in which all the players (herself included) make their moves according to the
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(coupled) distribution pgueq — but in reality she is free to make moves according
to a different distribution.

Say that player ¢ makes the perfectly rational move for the counterfactual
game. In this situation, player ¢ chooses her moves on the presumption that the
other players all behave according to that counterfactual game. The coupling
in that counterfactual game can be viewed as how player i’s implements the
common knowledge reasoning underlying much of conventional game theory.
Our presumption, formalized below, is that while the behavior of player ¢ will
not necessarily be perfectly rational for the counterfactual game, that behavior
can be approximated as though she is trying to behave that way.

Say that all players i go through the kind of counterfactual reasoning outlined
above for associated values of a’ and {b;} that do not vary much between them.
Then they will all have used very similar distributions P(x | .#.) to choose
their moves. This commonality in their reasoning will not statistically couple
their moves; Eq. 49 will still hold. However it will generate the virtual coupling
inherent in the “I know that you know ...” feature. Intuitively, it is because
they all model the “I know that you know ...” phenomenon in terms of similar
statistical coupling scenarios that they are virtually coupled.

Now in practice, no player ¢ will exactly evaluate such a counterfactual cou-
pling scenario to get a guess for U® (and indeed may not even be able to, for
example due to computational limitations). But we can presume that each such
player will go through reasoning not too different from such an evaluation, for
some particular a' and {b;} Accordingly, as a surrogate for each player i’s
actual reasoning, and the associated virtual coupling among all the players, we
can stipulate that each player’s reasoning results in a mixed strategy g; that
is highly consistent with a counterfactual statistical coupling scenario given by
Eq. 51.

To formalize this we must define what it means to have ¢; be “highly consis-
tent” with Uf. One natural way to do that is by stipulating that ¢; - U’ = K; for
some parameter K;, exactly as in the discussion of effective invariants in Sec.
3.2. In other words, we stipulate that E,_,.,(u’) be an i-dependent constant.
Plugging it in, this definition of “highly consistent” gives us our invariant for
player i, i.e., it gives us the likelihood over g for each player i.

In Sec. 5.3 we will replace each K; with an equivalent parameter [3; that
is easier to work with. This parameter will just be the parameter saying how
smart ¢; is for utility U!, as in Eq. 14 and the associated discussion of effective
invariants in Sec. 3.2. To have the notation reflect this alternative parameter-
ization we will sometimes write K (U!, 3;) (again, just as in Sec. 3.2). One of
the major advantages of parameterizing the i’th likelihood with §; rather than
K is that §; always ranges from 0 to +oo, for any game, for any player ¢, and
independent of what g_; is. This is not the case for Kj; its range of values will
depend on ¢_; in general. Intuitively, §; is simply K; normalized to account for
this.

As mentioned above, since the players are independent, the joint likelihood
is the product of the separate individual likelihoods. Using our notation for K,

44



we can write this likelihood as

P(J ] q)

HP(% | i)

with each U! given by Eq. 51.

Comparing this with Eq. 32, and recalling that e;(U}) = K (UL, b;), we arrive
at an alternative motivation for the choice of Eq. 52 for the independent-players
likelihood. Our presumption for the independent players scenario is that each
player is coupled to an environment in the exact same way as in the coupled
players scenario, via the function ¢; for some appropriate Boltzmann exponent
(labeled 3; for the independent players scenario, and b; for the coupled players
scenario). However in the coupled players scenario the environment of each
player 7 is set by the actual g_;. In contrast, in the independent players scenario,
each player i’s environment is set by a counterfactual ¢_;. Intuitively, we are
presuming that each player ¢ acts just as we do, when we make predictions for
a coupled players scenario.

Plugging in, the posterior for the independent players scenario is given by

Plg|#) o« e SWP(S g
HeaS(qi)a(qi . Uﬁ - K(U(Zwﬂz)) (53)

Plugging Eq. 51 into this result, we get the posterior probability over ¢ for
independent players:

P(q| ) Ha“l UL Bi) —

. Jde_idq w'(x—i)q'_;(x—i) T]; eﬂis(q/j)é(q’j : qu, — eg-(Ug,))
Jdd' 11, e‘”s(qli)c;(q’j Ul —€(Uy)

(54)
Next we plug in the usual coupled players eé-:
Pg| ) « Heas(qi)é[K(Ug,ﬁi) —

Jde_idd w'( xi)q'_;(x—i) ], eaiS(Q'j)é( o Uj — (UJ,,bz))
atS(q’; j i
[dg T1; e 59)s(q; - UL, - (UJ b))

q Y5

]

(55)

qi

where the K function is as defined in Sec. 3.2 with U! given by Eq. 51 and
parameterized by a’ and the set of values {b;} As usual, the posterior over z
is given by [dq q(z)P(q | #) and is identical to the Bayes-optimal ¢ under a
quadratic loss function.
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Intuitively, for fixed i, the {b;} are how smart player ¢+ imputes the other
players in the counterfactual game to be, which she uses to encapsulate the
common knowledge aspect of the game. So it encapsulates how she thinks
the other players will choose their moves. In particular, she presumes that in
formulating their mixed strategies, the other players will consider how smart
she is to be bi. Player i then uses a’ to set the relative probabilities of the
¢’s that are all consistent with those {b%}. More carefully, a’ and the {b%}
serve as our presumptions of the values of these quantities inherent to player
1. Properly speaking, we do not really presume that she explicitly has such
quantities and uses them to calculate a counterfactual game. Rather we presume
that her behavior can be well-approximated by such a common-knowledge type
of reasoning by her.

In contrast, §; reflects our assessment of how well player ¢ carries out such
reasoning. It measures how smart we believe she is in evaluating the counterfac-
tual game, and even the degree to which that game really guides her choice of
move. « then controls the relative probabilities of the ¢’s that are all consistent
with our assessment of a’ and the {b}} for all players i.

Note that since P(q | .#) is a product distribution, if P(g; | -#) changes,
there is no effect on P(gj»; | #). This is true even if the players are all
fully rational, both in the actual game and the counterfactual game, so that
with probability 1 the system is at a Nash equilibrium of the original game.
Accordingly, issues like whether such a Nash equilibrium is “stable” do not occur
in the independent players scenario. Any changes to (the distribution governing)
player i’s mixed strategy has no effect on the (distribution governing) the mixed
strategy of any other player j. This is because such a player j is playing best-
response to the counter-factual game, not to the actual game.

5.2 Independent players and the impossibility of a Nash
equilibrium

Since P(q | #) for independent players is a product,
Pl ) = [dig@Pla] )

H/in qi(i)P(qi | ) (56)

So our estimate of the joint distribution over moves, P(x | %), is a product
distribution. This contrasts with the coupled players scenario (see Sec. 4.3).
However just like in the coupled players scenario, in general the distribution
P(z | #) need not be a Nash equilibrium, even if the players are all fully rational.
This can be the case even if the players all agree exactly on the counter-factual
game, if that counter-factual game is one in which everyone is perfectly rational,
and if that game has a unique Nash equilibrium ¢, one that all our (real game)
players predict. In particular, this can be true in a game with a single Nash
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equilibrium where it is not the case that at the Nash equilibrium each player’s
mixed strategy is uniform over its support.3?

To see this, first recall that each player i considers the counterfactual game
to predict what the other players are doing in the actual game. Doing this gives
1 a set of moves that she could make, all of which are best-response. Now by
symmetry, our estimate of ¢’s distribution, P(z; | -#), is uniform over those
counterfactual game best-response moves, and zero elsewhere. Intuitively, this
reflects the fact that we have no reason to presume that ¢ would prefer one
over the other of the moves all of which she has concluded would maximize her
expected utility.?*

This uniformity will hold for all players. Therefore the estimate we make of
the distribution over joint moves, P(z | .#), is uniform over its support. This
means it is not the Nash equilibrium of the game (under which some players
have mixed strategies that are non-uniform over their support). Recall that
for quadratic loss, our Bayes-optimal estimate of the joint mixed strategy ¢ is
P(xz | #. So our result is equivalent to saying that the Bayes-optimal ¢ is not a
Nash equilibrium.

Example: Consider a 2-player game where each player has move space {A,
B}. Have the row player’s utility function be ug(A,A) = —1,ur(A,B) =
ur(B,A) = 0,ur(B,B) = —2, and the column player’s utility function be
uc(A,A) = L,uc(A4,B) = uc(B,A) = 0,uc(B,B) = 2. Then the only Nash
equilibrium is the mixed strategy qr(A) = gc(A) = 2/3.

The row player would consider a counterfactual version of this game. Doing
so, she would conclude (since she presumes all the players in the counterfactual
game are perfectly rational) that in the counterfactual game only one ¢ has
non-zero probability, namely the mixed strategy qr(A) = qc(A) = 2/3. She
would presume that the other player (the column player) in the real game uses
the associated mixed strategy of that counterfactual Nash equilibrium. Given
this presumption of hers for the actual go she faces, she would conclude that
both of her possible moves (A and B) maximize her expected utility, since that
is the case in the counterfactual game. However she has no reason to prefer one
move over the other. So we would estimate that her distribution is uniform.

Doing this for both players, we would conclude that the distribution over
joint moves is uniform over all possible x. Such a distribution is not a Nash
equilibrium.

This result does not mean that we claim that the Nash equilibrium ¢ is
impossible. We assign non-zero P(q | .#) to that Nash equilibrium ¢ in general.

33Some have worried that this type of scenario calls into question the validity of the Nash
equilibrium concept. The issue is why a player ¢ should play a particular non-uniform mixed
strategy over its best response pure strategies, when the only “advantage” of that mixed
strategy is that it happens to make the mixed strategies of other players be best-response.
See for example [62, 63, 64].

34Tt is interesting to consider this result in light of experimental and theoretical work con-
cerning risk-dominant Nash equilibria.
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It is just that our estimate of the distribution over moves will not be that Nash
equilibrium.

This contrasts with the coupled players scenario. In that scenario, if you
are explicitly provided .# saying that all players are perfectly rational, then it
is precisely that .# that tells you that player ¢ must play the Nash equilibrium
non-uniform distribution. If you are not provided that explicit prior information
— as you are not in the independent players scenario — then in fact you should
not assume that there is perfect rationality.

5.3 The MAP q for independent players

Since for independent players the posterior is a product distribution, the MAP
q is also. So with some abuse of notation, we can write

MAP(q) = argmax, P(q | &)
= argmax, HeaS((h’)(s(C]z‘ UL — KU, Bi))

7

Hargmaxqu(qi | 7)

I]MAP@» (57)

where the index variable z = (x1,2,...) is implicit, as is the conditioning on
the independent-players .#. For notational simplicity define

MAP(g;) £ G (58)

for each ¢, So we can rewrite Eq. 57 as ¢ =[], ¢;.

In the usual way, by maximizing entropy subject to the associated equality
constraint, each ¢; can be written as efilec(@:) up to an overall proportionality
constant. Recall that in writing ¢; this way that 3; is the Lagrange parameter
enforcing our constraint that U! - §; = K;, i.e., enforcing our restriction that the
4; be “well-consistent” with U!. Writing it out,

Us-ai = KU, Bi)

_ [ dz PUEIU ) 59
= Jde U (59)

Given this form for each ¢;, we can write the value of ¢ for some arbitrary x

as .
G(z) o HeﬂiU;(”). (60)

where the proportionality constant is independent of xz. Plugging in, this be-
comes

() Hexp[ﬂl{/dx,idq ut (2, 2_i)q_i(v_;) He“ls(‘“)é(qj . Ug,j . eé-(Ug
i j#i
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where for simplicity we have absorbed all proportionality constants into [;,
writing that new value of §; as 3.

As an example, say that our game has a single Nash equilibrium over pure
strategies, 2*. Let the b% (implicit in the €}) all go to infinity, keeping the a* all
finite, in such a way that the posterior distribution over ¢ for the counterfactual
coupled game approaches a single ¢ which is a delta function about z*. So U!(.)
approaches u’(., x* ;). Then ¢ approaches a product of (independent) Boltzmann

distributions: v i

This is a product of mixed strategies, each of the form of the Boltzmann dis-
tribution. As such it is similar to the QRE. Unlike the QRE though, there is
no coupling between the different mixed strategies comprising ¢. This reflects
the fact that, by hypothesis, the players are independent of each other in how
they form their mixed strategies, as well as in the subsequent moves they make.
Whenever there is such independence — which is the case in much of conven-
tional noncooperative game theory, implicitly or otherwise — the QRE is not
an appropriate choice for what kind of product of Boltzmann distributions to
use to capture bounded rationality.

Now say the counterfactual game has two pure strategy Nash equilibria,
x*(1) and z*(2), and that in evaluating the counterfactual game agent i gives
them probabilities ¢; and 1 — ¢;, respectively. Then rather than Eq. 62, we get

d(x) x [H eﬂiciut(m‘i,mii(l))] X [H eﬂi(l—ci,)ut(fl:,;,mii(2))]7 (63)
% i

i.e., a product of the kind of equilibria arising for the two Nash equilibria taken
separately. If 8; — oo, then agent i chooses the best response to either z* (1)
or z*,(2), depending on which gives 7 higher expected payoff (where the expec-
tation is evaluated according to the distribution (c¢;, 1 — ¢;)).

6 Miscellaneous topics

This section presents some illustrative extensions of the basic PGT framework
presented above.

6.1 Cost of computation

For a large range of games, the independent players scenario results in a tradeoff
between how smart a player is and the cost of the computation they must engage
in to determine their behavior. This relation between the cost of computation
and bounded rationality emerges from the mathematics; it is not some ad hoc
hypothesis we make to explain the observed (bounded rational) behavior of real
human beings. In addition, using this mathematics, we can quantify the tradeoff
and when it occurs, and more generally determine what characteristics of the
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game are most intimately related to the tradeoff. (All of that analysis is the
subject of future work.)

Say 3; increases while all other parameters are fixed, so U! doesn’t change.
Then the set of ¢; satisfying our invariant . shifts (cf. Sec. 3.2). Typically such
shifts in that set arising from increases in (3; also shrink that set (i.e., its measure
decreases). Intuitively, the smarter player i is (for the counterfactual game), the
more assured it is in assessment of the counterfactual game, and therefore the
more assured it is in making its move. As an example, say that a’ and the
values {%} restrict P(q | .7) to one g that is a Nash equilibrium of the game,
an equilibrium which is a joint pure strategy of the players. So P(z_; | 4.)
is a delta function about the moves of the players other than 7 at that Nash
equilibrium. Then for 8; — oo, ¢; also becomes restricted to that equilibrium,
i.e., the support of the likelihood, P(.# | ¢;) gets restricted to a single ¢; (one
that is a delta function about that Nash equilibrium’s z;). Accordingly the
measure of g; allowed by the likelihood goes to 0 as 3; approaches infinity.

When the set of ¢; allowed by the likelihood shrinks this way, the set of g;
allowed by the associated posterior, P(g; | -#) (i.e., the set of ¢; in the support
of that posterior) must also shrink. Typically this mean that the entropy of that
posterior shrinks. Usually this in turn means that the integral of that posterior,
P(z; | 7) = [dg qi(z;)P(g; | -#), also get a smaller entropy as 3; increases.
We can illustrate this by returning to our single pure strategy Nash equilibrium
example. In that example, for 5, — oo, the support of P(z; | .#) gets restricted
to the Nash equilibrium x;, and therefore its entropy goes to zero, the smallest
possible value. As another example, recall from Sec. 3.2 that since we have fixed
U¢, the entropy of the MAP ¢; cannot increase as f3; increases.

In such situations, all these distributions with decreasing entropy have more
and more information as 3; increases (recall that the amount of information in a
distribution is the negative of its entropy). Now model agent i’s computational
process (in deciding how to move) as starting with the assumption that a’, {b;}
accurately describes the other agents, so that the associated counterfactual game
results in an accurate approximation of U®. Under this model, we can interpret
the amount of information in P(z; | .#) as the amount of “computational effort”
i expends to try to approximate P(z_; | .Z.) accurately and guess accordingly.

As just argued, typically that amount of information in P(x; | .#.) — the
negative of its entropy — increases as (3; does. So under this model, the larger
0B; is, the more computational effort ¢ expends. On the other hand, assume
that the a?, {b;} going into i’s counterfactual game calculation give an accurate
approximation to the actual U?. In this case, the expected payoff to i rises as
;i does. So when the a’, {b’} give an accurate approximation to U’ (i.e., i’s
modeling is accurate), rising 3; both means more expected payoff to ¢ and more
computational effort by ¢. Evidently 3; controls a tradeoff between how smart
i is and how much computational effort it expends.3®

35The analogous argument for the coupled players scenario is more problematic. This is
because as ¢ changes her distribution, for example by increasing her (coupled players value)
bi, the distribution of the other players must also change, due to the coupling between players.
This means that the effect on the entropy of i’s distribution and to her expected payoff can
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6.2 Rationality functions

In many situations it would be useful to have a way of quantifying the rationality
of a player i, based purely on its behavior, without any model of its decision-
making process (even as ill-specified a model as saying that the player “evaluates
a counterfactual game to some given degree of accuracy”). We would like to be
able to do this for any mixed strategy ¢; and for any environment U? (whether
that mixed strategy is the choice of player i, as in type II games, or instead
governs how ¢ makes choice, as in type I games). We would like similar generality
for judging potential moves z;.

In particular, we do not want to require that the mixed strategy of real-
world players has some a priori-specified parameterized form, e.g., a Boltzmann
distribution over its environment. We do not want to assume that our data is
a (perhaps noise-corrupted) stochastic realization of such a mixed strategy, and
accordingly solve for the best-fit values of the associated parameters to some
experimental data (as is done in much of the experimental work involving the
QRE, e.g., [26]). After all, any requirement that the mixed strategy of a real-
world player is exactly given by such a parametric function will almost always be
in error, at least to a degree. This section presents such a broader quantification
of rationality.

Consider the situation where players ¢ has mixed strategy ¢; and her envi-
ronment is some fixed U?. It is reasonable to say that two choices of ¢ are
equally rational if they have the same dot product with U?. However we will
often want to do more than simply say whether two ¢; are equally rational for
some particular U?; we will often want to say whether a ¢; operating in envi-
ronment U is more or less rational than a ¢/ operating in environment (U’)%.
To do this we need a scalar-valued function R(V,p) that measures how rational
an arbitrary distribution p(y) is for an arbitrary utility function V' (y), i.e., that
measures how peaked p(y) is about the maximizers of V (y), argmax,V (y), and
about the other y that have large V (y) values.

Say that p is a Boltzmann distribution over V (), p(y) o« ¢V ®). Then we
can use information theory in general, and effective invariants and the functions
¢; discussed above in particular, to motivate quantifying the rationality of p for
V' as the value 8. The larger 3 is, the more peaked p is about the better mixed
strategies, and therefore the more “rational” p is.

In addition, so long as p”’ and p’ are Boltzmann distributions for V" and
V' respectively, this measure of the associated 3 value can be used to compare
the rationality of p” for V" with the rationality of p’ for V/. We can do this
even if the range of the function V' differs from that of V”. This attribute
of our measures differs from other naive choices for measuring rationality. In
particular, it differs from the choice of measuring rationality as p - V, which
not only reflects how peaked p is about y that give large V (y), but also reflects
the range of values of V(.). (Indeed, simply translating the values of V'(.) by a
constant will modify the value of this alternative choice of rationality function.)

be more complicated.
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In general though p will not be a Boltzmann distribution. So we need to
extend our reasoning, to define an R that we can reasonably view as a quantifier
of rationality for any p. Formally, we make two requirements of R:

1. If p(y) o< V¥ for non-negative 3, then the peakedness of the distribu-
tion — the value of R(V,p) — is .

2. Out of all p satisfying R(V,p) = (3, the one that has maximal entropy
is proportional to e #V(¥) . In other words, we require that the Boltz-
mann distribution maximizes entropy subject to a provided value of the
rationality /temperature.

We call any such R a rationality function.

Note that a rationality function can be applied to physical systems, where
V(y) is interpreted as the Hamiltonian over microstates y. Such a function is
defined even for systems that are not at physical equilibrium (and therefore
aren’t described by Boltzmann distributions). In this, rationality functions are
an extension of the conventional definition of temperature in statistical physics.

As an illustration, a natural choice is to define R(V,p) to be the § of the
Boltzmann distribution that “best fits” p. To formalize this we must quantify
how well any given Boltzmann distribution “fits” any given p. Information the-
ory provides many measures for how well a distribution p; is fit by a distribution
p2. On such measure is the Kullback-Leibler distance [8, 65, 51]:

KL(p1 || p2) £ S(p1 || p2) — S(p1) (64)

where S(p1 || p2) £ — [dy ;m (y)ln[ff((yy))] is known as the cross entropy from
p1 to pa (and as usual we implicitly choose uniform p).

The KL distance is always non-negative, and equals zero iff its two arguments
are identical. In addition, K L(ap! + (1 —a)p? || p?) is an increasing function of
a € [0.0,1.0], i.e., as one moves along the line from p! to p?, the KL distance from
p! to p? shrinks.30 The same is true for KL(p? || ap* + (1 — a)p?). In addition,
those two KL distances are identical to 2nd order about @ = 0. However they
differ as one moves away from a = 0 in general; KL distance is not a symmetric
function of its arguments. In addition, it does not obey the triangle inequality,
although it obeys a variant [8]. Despite these shortcomings, it is by far the most
common way to measure the distance between two distributions.

Recall the definition of the partition function, Z(V) £ [dy eV® (the nor-
malization constant for the distribution proportional to ev(y)). Using the KL

36This follows from the fact that the second derivative with respect to « is non-negative for
all a, combined with the fact that KL distance is never negative and equals 0 when a = 0.
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distance and this definition, we arrive at the rationality function

. eV
Rkr(V,p) = argmm@KL(PHW)

= argming|—0 / dy p(y)V (y) + In(Z(BV)) — S(p)
= argmax,[d / dy p(y)V (y) — m(Z(BV))]. (65)

In [29] it is proven that Ry, respects the two requirements of rationality func-
tions. Note that the argument of the argmin is globally convex (as a function
of the minimizing variable ). In addition its second derivative is given by the
variance (over y) of the Boltzmann distribution eV ®)/Z(3V). This typically
makes numerical evaluation of Ry, quite fast.

Comparing the definition of Rx to Eq. 20, we see that the KL rationality
of a distribution p is just the value of 8 for which p has minimal free utility
gap. When p is a Boltzmann distribution over the states of a statistical physics
systems, this 3 is (the reciprocal of) what is called temperature in the in App. 9.
Systems described by such distributions are at physical equilibrium. In other
words, the physical temperature of a physical system at physical equilibrium
is (the reciprocal of) its KL rationality. KL rationality is also defined for off-
equilibrium systems however, unlike physical temperature.

To help understand the intuitive meaning of the KL rationality function,
consider fixing its value for agent i to some value p;. Say ¢_; is also fixed (and
therefore so is player i’s environment, Uéfi). Then there is a value a; such that
the set of all g; having rationality value p; is identical to the set of all g; for
which E,, (U} ) = a;. In fact, a; is the expected value of U’ that would arise

if gi(x;) were a Boltzmann distribution (over U;_ (z;) values) with Boltzmann
exponent 3; = p;.%"

So knowing that player ¢ has KL rationality p; is equivalent to knowing that
the actual expected value of U? under ¢; equals the “ideal expected value”, in
which ¢; is replaced by the Boltzmann distribution over U;,i(xi) values with
exponent 3; = p;. (However note that such a constraint on the value of p; does
not actually specify q_;, so it does not specify that ideal expected value of U*.)

The (loose) physical analog of this result is that all distributions over states of

37To see all this, note that by definition of KL rationality function,

oIn(Z(U}_,) Z.
- ap B=Rkr (U} _..a:) ~ /dxi qi(zi)Uq_, (wi)-

However by the discussion in Sec. 3.2, we know that the quantity on the left-hand side is

just the Boltzmann utility evaluated at the specified value of 3, K;(8). So Rk (U;_,,q:) =
RKL(Ué,ivq—lL) = K(RKL(Uéii,Qi)) = K(RKL(Ué,q;vqu;)) =4 El]a‘,(Ué,i) = Eq;(Ué,Z) So
any two ¢;’s with the same rationality must have the same expected U, éﬂ' . To prove the other

direction, recall that for fixed U;'ﬂ_, the Boltzmann utility is a bijection from values of 3 into
R. QED..

93



a physical system having the same (potentially non-equilibrium) temperature
also have the same expected value of the Hamiltonian.

Comparing with the discussion in Sec. 4, we see that specifying the KL
rationalities of all the players is exactly the same as specifying that they all
obey the coupled players invariant, with the parameters of the functions ¢;
given by those specified rationality values. An .# specifying the one scenario is
identical to an .# specifying the other one. Accordingly, all the discussion in
Sec.’s 4.1, 4.8 holds for making predictions based on specified rationalities of the
players. In particular, as discussed in Sec. 4.1, the rationalities of the players in
a game reflects the structure of that game, as much as it reflects the intrinsic
characteristics of the players.

All of the foregoing was for quantifying the rationality of a particular g;.
However we can view the rationality of a particular x; as a special case, where
the “mixed strategy” ¢; is a delta function about one of its moves. (behaviorally,
it makes no difference if that z; is a sample of some preceding ¢; that ¢ chose, or
instead is i’s choice directly.) Plugging that in to the KL rationality function,
we get the following definition of the rationality of a move x;:

Say that a player i makes move x; when there is an environment U?. Then
the KL rationality of that move is the 8 such that if ¢ had instead chosen a
Boltzmann mixed strategy with exponent 3, the resultant expected value of
u® would have been the same as i’s actual expected utility. Formally, the KL
rationality function is the mapping from (x;, U?) to the 3 such that

_ [ daUi (e =)

6.3 Variable numbers of players

There are many statistical ensembles considered in statistical physics in addition
to the CE. In particular, in the Grand Canonical Ensemble (GCE), the numbers
of the particles of various types in the system is itself a stochastic quantity, in
addition to the states of those particles. This is how one analyzes the statistics
of physical systems involving chemical and/or particle physics interactions that
change the particles of the system.

Recall that the CE can most cleanly be derived as an MAP distribution with
an entropic prior and an appropriate expectation value constraint (App. 9). The
GCE can be derived the same way. Whereas with the CE the expectation value
constraint only concerns the expected energy, in the GCE it also concerns the
expected numbers of particles of the various possible types [19].

As pointed out in [11, 29, 25], the same same approach used in the GCE
can also be applied in a game theory context. In such a context, rather than
“particles of various types”, one has “players of various types”. Broadly speak-
ing, after this substitution, the ensuing analysis for the game theory context
proceeds analogously to that of the statistical physics context.

To illustrate this we present a game theory scenario that roughly parallels the

94



GCE.38 We postulate some pre-fixed set of player types. All players of a given
type have the same move space and the same payoff function. At the beginning
of each instance of our scenario, a set of players is randomly chosen, and each
is assigned a rationality value randomly. Those players are then coupled as
discussed above in Sec. 4, e.g., via a sequence of noncooperative games, and the
instance ends with all of the players making a move.

We know that the expected number of players of any one of the player
types is the same from one instance to the next, although we do not necessarily
know that expectation value. We similarly assume the expected rationality for
each player type (i.e., the expect value of b;, in the terminology of Sec. 4.2)
is the same from one instance to the next, without necessarily knowing those
rationality values. These rationality values are statistically independent from
each other.

We formalize this with an encoding of our variables into x modeled on the
scheme used to derive the GCE [19]. For all player types i, 2 indicates the
number of players of that type. For all integers j > 0, and all player types
i, oM 1nd1cates the move of the j'th player of type i, assumlng there is such
a player (i.e., assuming that 5 < x¥). The meaning of x ; for larger j is
undefined /irrelevant. Similarly xfj indicates the rationality of the j'th player
of type 7, assuming there is such a player, and is undefined otherwise.

We write 2V, 2™, and x%, respectively to indicate the vector of all player-
type cardmahtlcs, the (countably infinite dimensional) vector of the moves by all
possible players (including those that do not actually exist), and the (countably
infinite dimensional) vector of the rationalities of all possible players (including
those that do not actually exist). We also write the utility function of the type
i players as g;(z™,z), where Vi, g;(x™,z") is independent of x,ﬂ/fj Vi > xl.
Finally, we write N; and R; to indicate the (fixed but potentially unknown)
expected number of players of type i and expected rationality of those players,
respectively.

As in Sec. 4.2, the moves of our players are independent once the charac-
teristics of the game are fixed (i.e., we are dealing with a conventional nonco-
operative game in which the moves are given by sampling an associated joint
mixed strategy). However here the moves can be statistically dependent on
those characteristics. For example, if the rationality xfj = 0 for some j <z},
then we know that ¢; must be uniform, independent of the mixed strategies of
the other playres.

Reflecting this, we write

az) £ J[la"(@N)al(l Hqu Eaft) (67)

(2]

38One difference is that the GCE allows arbitrary statistical coupling between all variables.
In contrast, here we impose numerous statistical independences among the variables, e.g.,
statistical independence between the moves of the players. Another difference is that there are
multiple utility functions in games, whereas there is only analogous quantity (the Hamiltonian)
in physical systems. This makes the formulas here more complicated than those in the GCE.
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where the products over j and j' both run from 1 to co. When the argument

makes clear what the superscript {M, N, R} should be, we will sometimes leave

that superscript implicit. Note that in reflection of the statistical coupling of the

components of x, g is not a product distribution. So in particular the entropy

of ¢ is not a sum of the entropies of its marginalizations, as it was above.
Writing it out,

[ da’ q(a")o(xM — x})o(a' R — 2R)6(a'N — )
[ dx' q(z )6( R g B)§ (/N — )

q(ah | 2N, ) .(68)

With some abuse of notation, we will write “q% (. | 2V, R)” to mean the
(infinite-dimensional) vector with component zM given by q(x}h | 2N, ).

Our invariant says that each ¢ must result in an average of scfv that equals
N;, and similarly for each ¢t and R;. It also says that once zVV and z® are
fixed, ¢™ must be the joint mixed strategy appropriate for an associated coupled
players type II game. To write out this latter condition, first define “—(4,j)”
to mean all players other than (4, j) (including players of type i other than the
j’th one of that type). Next as shorthand we will often take the distribution
over all agents other than (¢, 7) implicit and write

U”( %,xR,xN)

(1>

Ul}ff (|zF xN)(x%"TN)

—(i.3) ’
- /dx*(z‘,j) q(@; ) [ 27, 2™) o' (@i, 2 5y, 2™)
(69)

where we will write Ub(., 2%, 2N) to mean the (infinite-dimensional) vector
with component x ; given by U w( M ,zft 2N). So the coupled players portion

of our invariant says that3?
Q%( | ‘TR7IN) 'Ui7j('7xN?mR) = K(Ui7j('axNaxR)7 xRi) VZ,]
(70)

Combining these three separate aspects of the invariant and explicitly ex-
panding in full each instance that a component of ¢ occurs, we get

P(#]q = §(N; — /d:r S(R; — /dx i) x
H/da?NdzR ¢~ (™) g®(x) x

6( Q%( | R’ N) U,;i _)(.lxRJ;N)('?‘TN) -
K(Ul}& ( ‘IR’IN)("xN)v zfj) ) ]

Can®

(71)

39Unfortunately, even with this abusive notation, book-keeping in the equations can get
messy.
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We then combine this likelihood with an entropic prior over q. This gives
us the posterior P(q | -#). As usual, if we wish to we can consider the MAP ¢
according to this posterior, various Bayes-optimal ¢’s according to this posterior,
etc., thereby getting a single distribution over z’s.

Again just like in the usual analysis, as an alternative to these distributions,
over x’s we can simply write P(z | %) directly, getting the same answer as the
Bayes-optimal ¢ under quadratic loss:

P@|.s) = / dg P(q | #)q(z). (72)

To evaluate this integral we must use Eq. 67 to plug in for g(x), Eq. 71 for the
likelihood, and then use the usual entropic prior. Also as usual we must be
careful to calculate the normalization constant for the posterior P(q | .#) and
divide that into the product of the likelihood and prior.

However arrived at, once we get a distribution over z, we can then marginal-
ize over various components of x to get distributions over the associated quan-
tities of interest. For example, we can do this to determine the typical move
of a player of a particular type, the typical number of players of some type
conditional on a particular move made by the first player of that type, etc..

7 Discussion and Future Work

It is worth comparing PGT to approaches based on models of actual humans
beings, like those using models of agent learning [66] or models incorporating the
mathematical structure of statistical physics [67, 68]. Broadly speaking, PGT’s
motivation is more like that of conventional game theory than that of model-
based approaches. Like conventional game theory, PGT investigates what can
be gleaned by careful consideration of the abstract problem of interacting goal-
directed agents, before the introduction of experiment-based insight concerning
the behavior of those agents.

An even closer analogy to PGT’s motivation than that provided by conven-
tional game theory is Bayesian statistics, and especially Bayesian statistics using
invariance-based arguments to set the prior [1]. Like such Bayesian statistics,
PGT is a first-principles-driven derivation of a framework for analyzing systems,
a framework into which one can “slot in” any kind of experimental data as it
becomes available.”

While the extraordinary success of statistical physics has been used to choose
the entropic prior for this paper, it is important to emphasize that many other
priors can also be motivated using first-principles arguments, many of them
also based on information-theoretic arguments. Similarly, many other choices
of likelihood (the invariant) can be motivated (as discussed above). PGT is not
restricted to the prior and likelihood considered in this paper, any more than
conventional game theory is restricted to some particular refinement of the Nash
equilibrium concept. The defining characteristics of PGT is the application of
such priors and likelihoods to game outcomes rather than (or in addition to)
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within games. The prior and likelihoods considered here are simply the examples
worked out in this initial paper.

Obviously, if you happen to know what algorithm the players are using, then
that should be reflected in the likelihood. PGT for various simple choices of such
algorithms/likelihoods is the subject of future work. More generally, humans
have lots of cognitive quirks presumably arising due to evolution. Accordingly
the precise priors and likelihood investigated here may work best for computa-
tional agents involved in a game with no foreknowledge of the game. Important
future work involves analysis with other priors and likelihoods incorporating be-
havioral economics results, prospect theory, etc.. These alternatives can be used
for the external scientist’s assessment of the individual players and/or (in the
independent players scenario) for the “models” the players have of each other.

Indeed, PGT can be seamlessly extended to encompass other kinds of .#,
even kinds that do not involve utility functions. In particular, one or more
observed samples of a mixed strategy ¢; can naturally be incorporated into
the likelihood term, P(g; | ). As another example, we can remove from .
the stipulation that our players’ choices of pure strategy are independent of
one another, i.e., the stipulation that we use a product distribution. Doing so
naturally results in correlated moves among the players, without any need for
carefully designed ansatz’s like those behind correlated equilibria [20].

Similarly, there is a good deal of empirical evidence that human players do
not prefer to maximize expected utility functions [ dz;q;(z;)U%(x;). Rather a
long line of experiments starting with Allais’ paradox [69] indicate that what
is invariant in the decision-making of a human ¢ is some non-linear functional
of its mixed strategy ¢;. As more gets understood about such psychological
phenomena [70] it should be straightforward to incorporate that understanding
into (Bayesian) PGT. One simply changes what is considered invariant from one
instance of the inference problem to the next, from being a linear functional of
¢; to being some other type of functional.

Related future work will integrate behavior modeling (“user modeling”, be-
lief nets, etc.) with PGT, to get an empirical science of human interactions.
Such behavior modeling can run the gamut from knowledge concerning humans
in general (e.g., behavioral economics) to knowledge concerning certain partic-
ular humans (psychological profiling, and in particular “games against nature”,
i.e., the decision-making belief net of a particular human, in a non-game theory
context [71]).

In addition to the foregoring, there is a huge amount of future work in PGT
that carries over from conventional game theory. At the risk of being glib, almost
every aspect of conventional game theory can be re-analyzed using PGT. This
includes in particular cooperative game theory, in which context PGT should
cut the Gordian knot of what equilibrium concept to adopt. Other broad topics
that should be investigated using PGT — and therefore bounded rationality —
are mechanism design, folk theorems, and signaling theory. It may also prove
profitable to have such investigations be extended to allow varying number of
players. Similarly, “bounded rational” evolutionary game theory, in particular
for finite numbers of agents, can be investigated using the “GCE” (variable
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number of players) variant of PGT illustrated above. All of this is in addition
to more circumscribed game theory issues, like different types of noncooperative
games (Bayesian games, correlated equilibrium games, differential games, etc.).

Other future work involves completing the analysis of the relationship be-
tween QRE and the coupled players MAP (and Bayes-optimal) ¢’s. This can
also be extended to the independent players. Similarly, coverage issues like those
presented in Prop.’s 1 and 2 for the coupled players scenario bears investigating
for the independent players scenario.

Other future work will investigate what happens in the variable number of
players scenario if the random variable of the number of player of type 7 is not
independent of the random variable of the total utility accrued by all players
of that type. One aspect of such an investigation would see what happens if
that random variable is statistically coupled to U?/z, the average, of players
of type i, of the expected utility of those players. In particular, it is interesting

to see what happens if that variable is coupled to #10]., the ratio of total
i 2
expected utility that is earned by players of type ¢, divided out among those

players.
All of this is in addition to the future work mentioned in the preceding
sections.

8 Appendix 1 — Historical context of PGT

Despite its widespread and profound usefulness in other fields, attempts to use
Shannon entropy in game theory, psychology, and economics has proven con-
troversial (see for example [72] and references therein). By and large though
those attempts have considered Shannon entropy as a physical quantity occuring
within the system under study, and then tried to relate that physical quantity to
other aspects of the system. In contrast, where Shannon entropy has proven so
successful in statistical physics, statistics, signal processing, etc., is in guiding
the external scientist in his inference about the system under study. It is in this
latter sense that Shannon entropy is used in PGT.

The results in [11, 29, 25] can be viewed as the first derivation of bounded
rational equilibria using full probabilistic reasoning. (The arguments in [27]
concerned equilibrium concepts rather than distributions over the space of all
possible mixed strategies.) It should be noted though that the maxent La-
grangian has a history far predating both the work in [11, 29, 25] and that in
[27]. As the free energy of the CE it has been explored in statistical physics for
well over a century. Indeed, the QRE is essentially identical to the “mean field
approximation” of statistical physics. (See also [67].)

In the context of game theory, the maxent Lagrangian was given an ad hoc
justification and investigated in [31, 32, 73] and related work. The first attempt
to derive it in that context using first principles reasoning occurred in [30].

The use of the Boltzmann distribution mixed strategies also has a long his-
tory in the Reinforcement Learning (RL) community, i.e., for the design of com-
puter algorithms for a player involved in an iterated game with Nature [74, 75].

99



Related work has considered multiple computational players [76, 77]. In partic-
ular, some of that work has been done in the context of “mechanism design” of
many computational players, i.e., in the context of designing the utility func-
tions of the players to induce them to maximize social welfare [78, 54, 58, 57].
In all of this RL work the Boltzmann distribution is usually motivated either as
an a priori reasonable way to trade off exploration and exploitation, as part of
Markov Chain Monte Carlo procedure, or by its asymptotic convergence prop-
erties [79].

The work in [80, 81, 82] in particular, and econophysics in general, also con-
cerns the relation between statistical physics and the social sciences. In particu-
lar, much of that work considers the relation betweenn equilibrium distributions
of statistical physics and notions of equilibrium in social science settings. None
of it concerns game theory though. To relate that domain to statistical physics
one must drill deeper into statistical physics, into its information-theoretic foun-
dations as elaborated by Jaynes. The first relatively simple-minded work relat-
ing information theory, statistical physics, and bounded rational game theory
this way was [51].

9 Appendix 2 - Using the Entropic Prior to De-
rive the CE

This appendix elaborates — in a very detailed manner — the application of
the entropic prior to statistical physics that results in the canonical ensemble
(CE). The level of detail presented borders on overkill. However it turns out
not to be trivial how to set the analogous details arising in the application of
the entropic prior to game theory. In addition, the subtleties of how to use the
entropic pror to derive the CE are invariably slighted in the literature. Hence
first working through the well-understood statistical physics case can help hone
intuition.

On the other hand though, it turns out that in the CE, the temperature T
— our prior knowledge concerning the system — equals the Lagrange parameter
of a constrained optimization problem, rather than the value of the constraint
associated with that Lagrange parameter. This is not the case with PGT, and
introduces some subtleties that are mostly absent from PGT. In addition, the
PGT analogue of what in the CE is the system’s Hamiltonian function are the
players’ utility functions. While there is a single Hamiltonian in the CE, there
are multiple utility functions in noncooperative games. Associated with this, in
PGT there are multiple analogues of what in the CE is (global) temperature.
All of this introduces complications into PGT that are absent from the CE. Due
to all this, readers already comfortable with the entropic prior and how to apply
it in the CE may want to skip this appendix.

Write the precise microscopic state of a physical system under consideration
as y. So for example, in classical (non-quantum) statistical physics, y is the set
of positions and momenta of all the particles in the system. Arguments from
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physics are typically invoked to justify a claim that the temperature T of the
system “determines the expected energy of the system” for the (known) energy
function of the system, H(y).%"

Note that for this conclusion of those arguments to be a falsifiable statement,
expectation values (“expected energy”) must be meaningful. So T must be
associated with a (falsifiable) physical distribution over multiple y’s, g(y), rather
than with a single y. Typically this distribution arises by not fully specifying the
starting y and by allowing unknown stochastic external influences to perturb the
system between when we acquire the value T and any subsequent observation of
a property of the system. (It is implicitly required that those external influences
do not change the value that a repeated temperature measurement would give.)
All that is fixed (in addition to T') are some high-level aspects of how the system
is set up, and of how it is opened to the external world. (For example, it
may be that the identity of the person performing the experiment, how they
physically hold the experimental instruments, etc., fixes those physical details.)
Accordingly, the state y at that subsequent observation can vary.

So physically, to falsify a prediction of what ¢ is associated with a particular
T, we can imagine repeatedly setting up our system in the way specified and
measuring the temperature, then opening it to (unknown) external influences in
the way specified, and after that recording the resultant state y; the associated
distribution across y’s is the (falsifiable) ¢. What we are interested in is the
relation between that ¢ and the measured T

The aforementioned “arguments from physics” tell us that for any specifica-
tion of how the system is set up and then opened, there is the same single-valued
function of the measured T' to the expected energy of the system under q. So
via that single-valued function, a particular value of T picks out a unique set of
¢’s (namely those with the associated expected energy).

Formally then, what we know is that the value of the temperature T uniquely
fixes the expected value under ¢ of a measurement of the system energy H(y),
independent of the details of how the system is set up and then opened to
external influences, i.e., T fixes E,(H) £ J dyH (y)q(y). In general, for the same
T, different choices of how the system is set up and then opened to external
influences will result in a different one of the possible g consistent with the 7-
specified value of E,(H). However we don’t know a priori how the specification
of the system’s setup and opening chooses among the set of all ¢ that are all
consistent with a particular value of E,(H). So even if the precise value of
E,(H) were given to us, and even if how the system is set up and then opened
were also specified, for us, it is as though nothing is specified concerning which
of the ¢ consistent with E,(H) has been picked out by what we know. (It is
in encapsulating this ignorance of the distribution across ¢’s that the entropic
prior will arise.)

Moreover, while for a particular choice of how the system is set up and then
opened up we can ascertain the expected energy of the system by repeated
experiments, often we cannot do this directly from a single one of those experi-

40Properly speaking, H is the system’s “Hamiltonian”.
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ments. This means in particular that while typically we can measure T in such
a single experiment, often we do not know how that value T fixes the expected
energy under ¢.*' So observing T does not always allow us to write down the
expected energy, only to know that it has been fixed. In such instances, having
observed T', we do not know what set of ¢’s that value of T has picked out, only
that there is some such set.

The invariant .# for this situation fixes T', and therefore specifies that the
distribution ¢(y) must lie on a hyperplane of the form E,(H) = h. But it does
not specify the value h. Nor does it specify anything concerning which ¢ goes
with any particular h, i.e., it tells us nothing concerning the distribution of ¢’s
across that hyperplane. Our inference problem is to circumvent this handicap:
& is the value T, together with the knowledge that it fixes E,(H), and we
must use this to say something concerning ¢, the quantity we wish to infer.
Formally, we wish to evaluate P(q | .#) for this choice of .#. (Note that this is
a distribution across distributions.)

Note that the distribution ¢ concerns the physical world. So in particular, it
is experimentally falsifiable. In contrast, a distribution P(q | .#) reflects us (the
researcher), and our (in)ability to infer ¢ from T and the specification of how the
system is set up and then opened. Although such a perspective is not required,
one can interpret P(q | .#) as a subjective “degree of belief” in the objective
(i.e., falsifiable) distribution ¢g. Alternatively, one can view .# as picking out
a set of physical instances of our system that are consistent with ., and then
interpret P(q | .#) in terms of frequencies of those instances.

For the reasons elucidated above, it makes sense to use an entropic prior
over ¢’s for this #. With such a prior, the MAP ¢ is the one that maximizes
S(q) subject to the constraint E,(H) = h. We just happen not to know h.

This is a constrained optimization problem with unknown constraint value.
The associated Lagrangian is

Z(B,q) = BlE,(H) — h] — S(q)- (73)

Removing the additive constant Bh and dividing by the constant 3 gives E,(H)—

%. This is known in statistical physics as the free energy of the system. 3 is

the Lagrange parameter of our constraint. To solve our constrained optimization
problem, ¢ and [ are jointly set so that the partial derivatives of £ (5, ¢q) are
all zero.*? The minimizer of the free energy — the MAP ¢ — is given by the
Boltzmann distribution,

q(y) o< exp (=BH(y)). (74)

410bservationally, that expected energy is defined in terms of a set of multiple experiments
in addition to the current one. Mathematically, even if we know the Hamiltonian function,
often we cannot evaluate its expected value for a particular T'.

42Throughout this paper the terms in any Lagrangian that restrict distributions to the
unit simplices are implicit. The other constraint needed for a Euclidean vector to be a valid
probability distribution is that none of its components are negative. This will not need to
be explicitly enforced in the Lagrangian here, since this constraint is always obeyed for the ¢
optimizing £ (8, q).
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For macroscopically large systems, the posterior over ¢ is in essence a delta
function about the MAP solution, so the Bayes-optimal solution for almost any
loss function is given by Eq. refeq:statphysex.

(B turns out to be the (inverse of) the temperature of the physical system
(measured in units where Boltzmann’s constant equals 1). In other words,
the invariant of our problem is the value of the Lagrange parameter, not of
the associated constraint constant. (The precise relationship between 5 and h
depends on the function H in general.)

This scenario and its solution ¢ is exactly the CE discussed previously. It is
the simplest of all scenarios considered in statistical physics (hence its name).
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