Principled Synthesis for large-scale multi-robot systems Task Sequencing

Dylan A. Shell

The Interaction Lab

Department of Computer Science
University of Southern California

Jan. 11 & 12, 2007

Robot swarms are multi-robot systems with many simple interacting robots that perform tasks collectively.

Such systems may exhibit rich behavior.

1/8

The problem:

Programming robot swarms is more of an art than a science.

Challenge:

Synthesis is an instance of the local-to-global problem requiring multiple levels of description be reconciled.

Proposed solution:

Enable system design at the macroscopic level by combining processes with formally characterizable macroscopic behavior.

2//

No suitable controllers

Levels of Detail

Modeling Individual Processes

Complete description of each robot's state.

Low-dimension description that collapses equivalence classes of state.

Examples

- Symmetry-breaking
 - Task sequencing
 - Collective strategy selection
- Smoothing
 - Task-allocation/Division of labor