Complex Systems Engineering for the Global information Grid

Bob Marcus robert.marcus@sri.com

Overview of Talk

- Background
- NCOIC and the Global Information Grid
- Complex Systems Engineering Strategies
- Foundation Information Grid (NCOIC Demo)
- Conclusion

My Background

- Industrial system of systems architecture and implementation at Boeing and General Motors
- Military systems of systems architecture and standards as an SRI consultant to the DoD
- Author of "Great Global Grid: Emergency Technology Strategies" (2002)
- Director of Colorado State Grid Initiative
- Chair of Modeling, Simulation and Demonstration Working Group at Network Centric Operations Industry Consortium (NCOIC)
 - Foundation Information Grid Demonstration as a step towards the Global Information Grid

Copyrighted Material

GREAT GLOBAL GRID Emierging technology strategies

ROBERT MARCUS

Copyrighted Material

The NCOIC and the Global Information Grid

Overview of the NCOIC

- The Network-Centric Operations Industry Consortium (NCOIC.org) membership includes all of the leading defense contractors
- The NCOIC's mission is to facilitate collaboration on creating standardized interoperability frameworks
- The Modeling, Simulation and Demonstration Working Group's goal is to initiate foundation demonstrations for future system of systems architectures
- One example of these future architectures is the DoD's Global Information Grid
- The initial demonstration is called the Foundation Information Grid

Information Grid

Fig. 1: Information Grid with Sensors, Satellites, databases, high performance computers, clusters and filters (independent machines)

Colorado Information Grid Vision

Net-Centric Operations and Warfare (NCOW) Reference Model Operational Concept Graphic (OV-1a)

Global Information Grid (GES.DOD.MIL)

National Security Platforms

Information (Content) Management

Enterprise and COI Applications

Enterprise Data

COI

Data

Private

Data

E.

Information Assurance Services

Information Discovery, Mediation and Distribution Services

Network Management Services

Local and Personal Computing LANS MANS OANS WAN Communications Networks

Regional and Global Computing

Standards Needed at Multiple Levels

Applications, Data Analysis and Data Mining

Interface Protocols and APIs

Data Processing, Transformation, and Fusion

Data, Metadata, and Semantic Representations

Non-functional Capabilities e.g. IA, QoS, Policies

Data Transport and Messaging Mechanisms

Network and Communication Protocols

Virtualized Databases

Virtualized Storage

Complex Systems Engineering Strategies

Complex Systems Properties

- Emergent Macroscopic dynamics and variables occur in the system, which is not easily predictable from local dynamics
- **Multiscale Interactive** The macroscopic and component-level behavior interact in a measurable way
- Non-equilibrium Metastable Short term stability with large state changes possible under small perturbations
- Evolutionary Adaption- The system exhibits altered behavior in response to environmental changes
- Self Organizing Coordinated behavior can take place among components without centralized guidance

Structures in Complex Systems

- **Component** = Basic element of functionality in the system. Intrinsic behavior under environment influences.
- **Collaboration** = Interactions without macroscopic coordinators. Behavior influenced by peer-to-peer interactions.
- Coordination = Interaction possibly managed by coordinators to support group goals. Behavior influenced by group dynamics.
- **Control** = Interactions directed hierarchically to foster global goals. Behavior constrained by controller.
- All of these structures can be present in a system of systems and can be mixed and combined recursively

Complex Systems Properties

- Emergent Collaboration, Coordination and Control dyanmics can arise that is not easily predictable from component dynamics
- Multiscale Interactive Component behavior can influence coordinators
- Non-equilibrium Metastable Collaborations and coordinations can undergo large changes in response to small inputs
- Evolutionary Adaption- Components, coordinators and controllers can adjust their behavior as environments change
- Self Organizing Coordinated behavior can take place among components without centralized guidance

Complex System Structures

Structures in Complex Systems

Components	Collaboration	Coordination	Control
Have dynamics and/or goals	Individual dynamics and/or goals	Shared dynamics and/or goals	Global dynamics and/or goals
Capable of adaptable behavior	Individuals adapt	Individuals and coordinators adapt	Controllers adapt
Individuals	Interaction	Communities of Interest	Enterprise
Molecules in Chemistry	Gas	Liquid	Solid
No coupling	Loose coupling	Cooperative processes	Tight coupled
Citizens in Government	Town Meetings	Representatives	Authoritarian
Computers in network	Internet	Extranet	Intranet
Neurons in Neurodynamics	Nervous System	Brain Cerebellum	Cognitive system

Complex Systems Engineering Strategies

- Bottom up Self-organizing, Emergent collaboration and coordination from interactions.
- Top down Traditional systems engineering, Predefined coordination and interactions
- Matchmaking Coordination is based on matching and combining existing components to meet requirements
- Middle Out Coordination combines existing components and collaborations but also drives new requirements, collaborations and components

Note: Alternate strategies can be used in different stages of engineering

Top Down Design (Control-based)

Bottom Up Design (Collaboration-based)

Matchmaking (SOA Orchestration)

Middle Out Design (Coordination-based)

Shared Resource Integration Process

Foundation Information Grid (NCOIC Demo)

Foundation Information Grid

- Components Diverse data bases and physical storage with application program interfaces.
- Control Components under a single organization. Data access controlled by management. Can be viewed as a high level component.
- Coordination Components under diverse management use shared metadata and data access through a Coordinator. (Storage Resource Broker (SRB) from UCSD).
- Collaboration Data sharing across coordination zones using metadata mappings and middleware. Cooperation across communities based on need to share.

Foundation Information Grid

Foundation Information Grid Strategy

- A Community of Interest (COI) is a group of users who have agreed to collaborate and have a centralized process for defining shared capabilities
- COIs define an architectural framework for their components
- The components are placed in the framework to implement a COI coordination for users
- Multiple COIs can voluntarily collaborate to share a subset of their coordinated components
- Communities of Interest must agree on interoperability standards for the shared collaborative capabilities

Application -> SRB -> Data

Metadata-based Access

Data Grid

Database Interfaces

Databases

Storage System

The SRB (Storage Resource Broker) is middleware that supports multiple application interfaces to diverse databases and storage systems

Next four slides produced by collaborators at UCSD SRB Group

Storage Resource Broker

SRB Data Integration Zone (Coordination)

Collaboration Across Zones

Next Steps

- Determine user requirements for the Global Information Grid
- Work with groups responsible for standards and implementation of core services for Global Information Grid
- Develop a coordination strategy matching Foundation Information Grid capabilities and end-user requirements

Conclusions

Questions from 1995

- What are the basic laws of the scientific discipline of complex systems?
- What are the generic principles for complex systems engineering?
- Is it possible to build customizable generic tools for the modeling, simulation, and analysis of complex systems?
- How can we maintain systems with constantly changing requirements?
- Is there a management strategy for dealing with systems that are too complex for individuals or small groups to understand?
- Are there unique characteristics of complex systems that are composed primarily of multiple intelligent entities, both human and non-human?
- How can non-adaptable system elements be reengineered, and can adaptability be 'designed into' complex systems in the first place?

Final Thoughts

• The fundamental change that complex systems bring to systems engineering is the need to create federated coordination strategies in addition to control algorithms.

• Implementing this new paradigm will require extensive research in many disciplines during the next decade.

• Due to the broad fundamental impact of complex systems engineering, there should be a coordinated initiative to support research projects in this domain.

