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Abstract. A primary objective of this 
paper (as well as of this symposium) is 
to examine concepts from the field of 
complex systems that can be applied to 
systems engineering. In this paper we 
focus primarily on the notions of emer-
gence and entities and discuss their im-
plications for systems engineering.  

1 Introduction 
Complex Systems. The study of Com-
plex Systems (originally called Complex 
Adaptive Systems) as a distinct and 
recognizable discipline has been ongo-
ing for more than three decades.  Most 
trace its origins to John Holland’s work 
on genetic algorithms (Holland, 1975) in 
the 1970’s. Holland showed that a non-
directive random process, which resem-
bles biological evolution, is capable of 
producing useful designs.  

Some trace it back much farther—to 
Henri Poincaré’s invention of chaos the-
ory, approximately a century ago, when 
he demonstrated that it is mathemati-
cally impossible to find a closed form 
solution to the Newtonian equations for 
the trajectories of three or more interact-
ing gravitational bodies.1  

                                                
1
  The following websites (among others) tell 

the story. 

http://cosmicvariance.com/2006/ 
07/23/n-bodies/, 

 

Henri Poincaré2 
Photograph from the frontispiece of the 1913 

edition of ‘Last thoughts’ and therefore published 
prior to 1923. 

                                                                 

http://www.irit.fr/COSI/training/ 
complexity-tutorial/henri-poincare.htm, 
and http://www.imcce.fr/Equipes/ASD/ 
preprints/prep.2004/ 
Poincare_Barcelone_2004_en.pdf.  

2
  The images used in this paper are all 

copyright free from Wikipedia Commons: 
http://commons.wikimedia.org/. 
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Systems Engineering. According to the 
INCOSE website,3  

Systems Engineering is an engineering 
discipline whose responsibility is creating 

and executing an interdisciplinary proc-

ess to ensure that the customer and 
stakeholder's needs are satisfied in a 

high quality, trustworthy, cost efficient 
and schedule compliant manner 

throughout a system's entire life cycle. 

Although not explicit in this definition, a 
significant aspect of systems engineer-
ing is the development of a design for 
the system being engineered. 

Our focus in this paper will be on the 
relationship between emergence and 
design. Emergence will lead us to con-
sider the issue of entities, what they are 
and what it takes for them to persist. We 
also examine the sorts of environments 
that support emergence.  

Section 2 discusses the notion of design 
in complex systems and explores what it 
means to say that a system is complex. 

Section 3 extends the framework devel-
oped in section 2 to define emergence. 
It also shows how emergence is inti-
mately related to systems engineering. 

Section 4 discusses how emergence is 
connected to our notion of entities. It 
discusses the question of whether enti-
ties are objectively real. (We conclude 
that they are.) 

Section 5 discusses the relationship be-
tween thoughts and things—and in par-
ticular between thoughts, requirements, 
designs, and things. It discusses com-
puter science’s success in developing 
languages that help us externalize our 

                                                
3
  http://www.incose.org/practice/ 

fellowsconsensus.aspx 

thoughts. It attributes a significant part 
of that success to the fact that the lan-
guages in which we express our 
thoughts are also the languages we use 
to control computers. This section also 
discusses the notion of a level of ab-
straction, the technique used in software 
to create emergence. Systems engi-
neering isn’t so fortunate.  

Section 6 discusses multi-sided plat-
forms. A multi-sided platform is a level 
of abstraction that provides a means, 
mechanism, or set of conventions to 
support the interaction of multiple ele-
ments.  

Section 7 discusses dissipative sys-
tems, a kind of entity intermediate be-
tween static and dynamic entities, and 
the kind of entities engineers tend to 
build. A major difference between  dissi-
pative systems and dynamic entities is 
that dynamic entities are designed from 
the core to be self-sustaining, with 
whatever additional functionality they 
have built on top of their ability to sus-
tain themselves.  

Section 8 discusses service-oriented 
designs. It argues that this is not a fad 
but a fundamental design principle used 
by nature. 

Section 9 discusses feasibility ranges, 
that all emergent properties have them, 
and that it would serve us well to pay 
more attention to them. 

Section 10 discusses modeling and 
simulation. Makes the point that we 
aren’t nearly as good at it as we need to 
be. It also makes the point that even if 
were much better at it, we would still not 
necessarily know how to use it to model 
emergence. 

Section 11 discusses innovative envi-
ronments. An innovative environment is 
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one that may be thought of as emer-
gence-friendly. This section suggests 
some properties that innovative envi-
ronments may be expected to have and 
that seem likely to foster emergence. 

2 Design in complex systems 
Before discussing design in the con-
structive sense as used in systems en-
gineering, we examine what we mean 
by design in general.  

A primary goal of science is to compress 
phenomenological descriptions into 
concise abstractions. One wants to for-
mulate a statement about nature that 
(a) captures a wide range of phenom-
ena but (b) is more abstract and concise 
than a simple enumeration of the phe-
nomena described. If successful, one 
will have achieved a reduction in the al-
gorithmic complexity4 of one’s descrip-
tion of nature.  

Chaitin, one of the developers of the 
theory of algorithmic complexity, credits 
Leibniz with being one of the first to for-
mulate the goals of science in this way. 
(Chaitin, 2003) 

What is a law of nature?  

According to Leibniz, a theory must be 

simpler than the data it explains!  

Because if a physical law can be as com-

plicated as the experimental data that it 
explains, then there is always a law, and 

                                                
4
  The algorithmic complexity of some in-

formation is the smallest computer pro-
gram required to reproduce that informa-
tion. A random sequence, a sequence 
with no internal structure, has maximal al-
gorithmic complexity because it is impos-
sible to find a computer program that will 
reproduce the sequence that is shorter 
than the sequence itself. 

the notion of “law” becomes meaning-
less!  

Understanding is compression! A theory as 

complicated as the data it explains is NO 
theory!  

All of this is stated very clearly (in French) 

in 1686 by the mathematical genius and 
philosopher Leibniz! 

 

 

Gottfried Wilhelm Leibniz 

Gottfried Wilhelm Leibniz (Artist: Bernhard Chris-
toph Francke, Braunschweig, Herzog-Anton-

Ulrich-Museum, ca 1700) 

2.1 Upward predictability 
When applied to a relatively well-
bounded region of interest (here for 
convenience called a system) one is 
looking for what we would now call the 
design of the system.  

Science often proceeds by examining a 
system’s components and their interre-
lationships in the hope that in doing so 
one will be able to formulate a simpler 
description of the system as a whole.  

Newton’s law of gravity is a good exam-
ple. It offers a description of how two 
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bodies will move with respect to each 
other—a description which is much sim-
pler than an enumeration of the relative 
positions of the bodies in time. Further-
more, given Newton’s law of gravity, it is 
possible to construct closed form equa-
tions that characterizes the position of 
the two bodies when under the influence 
of mutual gravitational attraction.  

This is what one wants: an analysis of 
the interactions at the component level 
that yields a simple explanation of the 
apparent complexity of phenomena ob-
served at the system level. Systems that 
yield to this paradigm are what might be 
called upwardly predictable.  

2.2 Complex systems aren’t 
upwardly predictable 

A distinguishing feature of systems that 
are considered complex is that they tend 
not to be upward predictable: there is no 
(known) way to reduce the complexity of 
a description of the system as a whole 
by formulating it in terms of descriptions 
of the system’s components. In other 
words, the properties and behaviors of a 
complex system are not describable as 
a simple, closed-form, mathematical 
function of the properties and behaviors 
of the system’s components. Typically 
the best one can do is to propagate the 
descriptions of the component interac-
tions and see what happens at the sys-
tem level.5 

An example of such a class of systems 
are n-body gravitational systems for 
n > 2. As indicated above, Poincaré 
showed that Newton’s laws cannot be 
used to provide a reduced description of 
the trajectories of more than two gravita-

                                                
5
  This approach is now known as agent 

based modeling. 

tional bodies. There is no simple way to 
combine descriptions of the system’s 
components to produce a description of 
the system as a whole that is simpler 
than propagating the descriptions of the 
components.6 

Systems deemed to be complex in this 
sense are not claimed to violate tradi-
tional notions of scientific causation: no 
additional forces are presumed to con-
tribute to the complex functioning of the 
system as a whole. The only claim is 
that there is no compact mathematical 
equation that will characterize the be-
havior of the system as a whole as a 
function of its components.  

3 Emergence 

3.1 Emergence and Com-
plexity 

Sometimes higher level systems have 
properties that seem to be both complex 
and not complex in the sense just de-
scribed. Such systems have properties 
that may be characterized in relatively 
simple terms—much simpler than the 
terms required to characterize the ele-
ments of which they are composed. 
Even so, those systems still cannot be 
usefully understood in terms of a func-
tion from their components to their 
higher level properties.  

An example is a computer program that 
computes a mathematical function. The 
mathematical function itself is a straight-
forward characterization of the input-
output behavior of such a program. 
Such a description is far simpler than 

                                                
6
  Another example is quantum mechanics. 

There is no simple way to evaluate the 
Schrödinger equation for systems of more 
than a very few particles. In other words, 
nature is complex. 
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the description of the behavior of the 
computer on which that program is run-
ning. If one were to describe the se-
quence of states (at virtually any level of 
abstraction from quantum mechanics to 
gates to machine language) through 
which the computer passes as the pro-
gram runs, that description would be far 
more complex than the description of 
the function itself. Furthermore, there is 
no general way to map the states of the 
computer (or the computer program that 
generates them) to the mathematical 
function the software is computing.7  

Typically the best one could do would 
be to trace through the step-by-step op-
eration of the computer and see what 
happens. So even though our software-
plus-computer system is simple to de-
scribe at the system level, it is also 
complex in the sense described earlier.8 

So here we have an apparent paradox. 
We have both (a) complexity: there is no 
natural complexity-reducing transforma-
tion of the descriptions at the lower level 

                                                
7
  In general it is not decidable what function 

an arbitrary computer program computes. 
In using this example, we are not identify-
ing complexity with undecidability. But we 
are categorizing the undecidable as com-
plex. 

8
  Because of this seeming inversion of con-

trol—a simpler higher level appears to 
spring from a more complex lower level—
there has been a temptation to look for an 
explanation in terms of “downward causa-
tion”—the simpler higher level causes the 
phenomena observed at the lower level.  

Of course there is no downward causa-
tion. But because we are so used to think-
ing in terms of simple abstractions giving 
rise to complex phenomena it’s easy to 
understand why downward causation may 
seem like an attractive possibility. 

into descriptions at the higher level and 
(b) simplification: the higher level may 
be described in simpler terms than 
those needed to describe the lower. 

We have come to use the term emer-
gence to describe situations such as 
these. In his PhD dissertation Shalizi 
captures the algorithmic complexity 
sense of emergence as follows. 

One set of variables, A, emerges from an-
other, B if (1) A is a function of B, i.e., at 
a higher level of abstraction, and (2) the 
higher-level variables can be predicted 

more efficiently than the lower-level ones, 

where "efficiency of prediction" is defined 

using information theory.9 

3.2 Emergent properties are 
autonomous  

Although Shalizi’s definition gets at the 
algorithmic complexity issues, it misses 
an important point about emergence. 
The relationships between the lower and 
higher level variables are typically much 
less important than the emergent prop-
erty itself. In fact, the higher-lower rela-
tionships are typically a matter of con-
venience rather than necessity.  

In our example of software that com-
putes a mathematical function one 
doesn’t care what sequence of states 
the computer traverses. All one cares 
about is that the function be computed 
correctly. There may be any number of 
ways to compute the function. Each may 
traverse a different sequence of com-
puter states but yield the same eventual 
output. It doesn’t matter which one is 

                                                
9
  The extract is from his website: 

http://www.cscs.umich.edu/ 
~crshalizi/notebooks/emergent-
properties.html. 
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used as long as the final result is cor-
rect. 

To capture this aspect of the issue, I de-
fined (Abbott, 2006b) emergence as the 
situation in which one can describe 
properties of a system in terms that are 
independent of its components. From 
this perspective, the property of interest 
(in this example the computation of a 
mathematical function) may be imple-
mented by lower level components (the 
program must run on some computer 
after all), but it is defined independently 
of those components.10  

Standard examples of emergence in-
clude the hardness of diamonds (static 
emergence) and the tendency of some 
species of birds to move in flocks (dy-
namic emergence). In both cases, the 
higher-level properties are not only de-
fined ab initio at the higher level, they 
are often meaningless when thought of 
as properties of the system compo-
nents.  

A diamond is hard because of how its 
component carbon atoms fit together.11 

                                                
10

  As developed in (Abbott 2006) this leads 
to the notion of downward entailment, a 
phenomena similar to but scientifically 
more acceptable than downward causa-
tion. The specific example developed in 
the paper shows that because one can 
simulate a Turing Machine using the 
Game of Life, the Game of Life is unde-
cidable. The undecidability of Turing Ma-
chines downwardly entails the undecida-
bility of the Game of Life. 

11
  A diamond provides a nice example of 
downward entailment. Because the car-
bon atoms of a diamond implement a rigid 
lattice, the position and orientation of the 
diamond as a whole downwardly entail 
the positions of its components. 

But the notion of a collection of carbon 
atoms fitting together in this way is ex-
pressible only at the level of the dia-
mond itself.  

Similarly, our notion of a flock is not just 
a collection of birds; it is a collection of 
birds that satisfies our intuitive sense of 
what it means to be a flock.12 The notion 
of a flock is no more accessible in the 
language in which one describes indi-
vidual birds in isolation than the notion 
of a diamond is accessible in the lan-
guage in which one describes individual 
carbon atoms in isolation.  

3.3 Emergence and require-
ments 

The examples discussed above are 
what might be considered naturally oc-
curring emergence, Systems engineers 
are familiar with emergence as the re-
quirements that a system must satisfy. 
Consider what we would now consider a 
simple system such as an automobile. A 
primary requirement is that it can be 
driven from here to there. That property 
is emergent. It is not meaningfully ap-
plied to any of the components of the 
automobile. Nor is it expressible as a 
closed form mathematical function of the 
automobile’s components.  

                                                                 

 This is a good illustration of the signifi-
cance of multi-scalar phenomena. At one 
level, the diamond as a whole moves 
through space. At another the diamond as 
a rigid lattice structure is maintained. We 
have two almost independent collections 
of phenomena that operate on different 
scales but that are sufficiently intertwined 
to produce the effect of downward entail-
ment.  

12
  The American Heritage

®
 Dictionary (2006)  

defines flock as, “A group of animals that 
live, travel, or feed together.” 
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Thus systems engineering (in fact, engi-
neering in general) may usefully be un-
derstood as the design and develop-
ment of systems that have desired 
emergent properties. As Rechtin put it, 

A system is a construct or collection of dif-

ferent elements that together produce re-
sults not obtainable by the elements 

alone.13 

Virtually any engineered product illus-
trates emergence in this sense. Con-
sider the fact that computers perform 
binary arithmetic. Binary arithmetic (or 
any other kind of arithmetic) has no rele-
vance as a property of any of the com-
ponents that we use to build computers. 
There is no sense in which one can say 
that properties significant to arithmetic 
apply in any normal sense to electrons. 
Nor does it make sense to compare bi-
nary arithmetic in any information theo-
retic sense at the electron level to its 
implementation at the computer instruc-
tion level. Binary arithmetic is defined 
autonomously at the computer level and 
is not applicable to the components of 
which the computer is constructed. 

Emergence in engineering is standard 
practice. We tend to be surprised by it 
when we see it occurring in nature with-
out our help. But it does. One way to 
think about it is that nature really is a 
blind watchmaker/engineer—and not 
only when engineering biological sys-
tems.  

4 Emergence and entities 
In all of the preceding examples, emer-
gent properties were defined in terms of 

                                                

13  From the INCOSE website: 
http://www.incose.org/practice/ 
fellowsconsensus.aspx. 

 

a higher level entity—often using lan-
guage that is not even applicable to the 
components of the entity. If one thinks 
about it, this is quite strange. What are 
these higher level entities we are talking 
about? On what ontological grounds do 
we permit ourselves to speak about 
them? Perhaps more to the point, are 
such higher level entities objectively real 
in any way that we can make sense of? 
Is a diamond or a flock or an automobile 
(or any other system) a real entity? Or is 
it simply a collection of its components?  

In (Abbott, 2007) we conclude that enti-
ties are objectively and recognizably 
real in that (a) they have either more or 
less (but not the same) mass as the 
combined mass of their components 
considered separately, and (b) they bind 
their components together in a form that 
reduces entropy.  

It is only because of the entropy reduc-
tion contributed by entities that it is pos-
sible for Shalizi’s definition of emer-
gence to be realized. How is it possible 
after all for the algorithmic complexity of 
a system’s description to be reduced? A 
description of a system is a description 
of a system. If one description is simpler 
than another, it is only because the sim-
pler description takes advantage of 
some entropy-reducing structure that 
the more complex description ignores.  

So if a description of a system ex-
pressed in terms of “higher level” con-
structs is simpler than a description ex-
pressed in terms of “lower level” con-
structs, that means that the “higher 
level” constructs have built into them 
some structure that the lower level con-
structs lack. But that raises the question 
of how the “higher level” constructs em-
body and maintain that structure.  
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That’s what an entity is, a means to em-
body and preserve structure.  

4.1 Kinds of entities 
There are two kinds of entities: static 
and dynamic.14 Static entities (for exam-
ple, atoms, molecules, and solar sys-
tems) maintain structure because they 
exist in energy wells—and hence have 
less mass as an aggregate than their 
components.15  

Dynamic entities (for example, living or-
ganisms, social and political organiza-
tions, and, strikingly, hurricanes16) main-
tain structure by using energy they im-
port from outside themselves. Because 
of the flow of imported energy, they 
have more mass as an aggregate than 

                                                
14

  Below we will introduce an intermediate 
third kind, the kind that engineers gener-
ally build. 

15
  Paul Humphreys (1997) suggested a simi-
lar notion, which he called fusion. The fol-
lowing is Timothy O’Connor’s summary  
(2006) of Humphreys’ position. 

“[Emergent properties] result from an 
essential interaction [i.e. fusion] be-
tween their constituent properties, an in-
teraction that is nomologically necessary 
for the existence of the emergent prop-
erty.” Fused entities lose certain of their 
causal powers and cease to exist as 
separate entities, and the emergents 
generated by fusion are characterized 
by novel causal powers. Humphreys 
emphasizes that fusion is a “real physi-
cal operation, not a mathematical or 
logical operation on predicative repre-
sentations of properties.” 

16
  See (Abbott, 2007). We discuss hurri-
canes as entities below. 

the combined mass of their compo-
nents.17 

Entities have emergent properties that 
are defined at the level of the entity it-
self. That a government is democratic or 
that a diamond is hard are properties 
defined at the level of the government or 
the diamond. They are not properties of 
the components of a government or a 
diamond.  

4.2 The wonder of entities 
One must wonder whether this isn’t 
slight of hand. How can one speak of an 
entity and discuss its properties inde-
pendently of its components?  

Do entities spring into existence fully 
formed? How is that possible? Because 
this seems so mysterious, one may be 
tempted to speak of mechanisms for 
self-organization. We see this as a dis-
traction.  

There is nothing mysterious about how 
entities form. Static entities form as a 
result of well understood physical laws: 
atoms are created from elementary par-
ticles; molecules form from atoms; etc. 
Dynamic entities also form as a result of 
natural processes. Governments form 
when people create them—either explic-
itly or implicitly. Hurricanes form when 
the atmospheric conditions are right. 
Self-organization is not the point.18  

                                                
17

  Speaking poetically one might refer to the 
energy flowing through a dynamic entity 
as its soul or spirit. When the energy 
stops flowing, the entity dies. From this 
perspective a soul or spirit has mass. 

18
  It is still an open question how one might 
form a biological cell “from scratch.” There 
is no known mechanism for producing a 
cell other than through cell division, i.e., 
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The marvel of entities is not in some 
seemingly magical process of self-
organization; the marvel is that entities 
exist at all and that they have properties 
and behaviors that in some sense may 
be described autonomously.  

The fact that entities seem to spring into 
existence in some sense fully formed 
and that they have properties that seem 
to be defined self-referentially is the ba-
sis of the argument from Intelligent De-
sign. How can something that is alto-
gether new and that has new proper-
ties—properties like the ability to fly that 
seem to be defined in terms of the entity 
itself—appear apparently from no-
where?  

One answer—not related to Intelligent 
Design—is that the “new properties” we 
attribute to entities are really nothing 
more than ideas in our minds. Proper-
ties as such don’t exist in nature. Enti-
ties are what they are no matter what 
properties we attribute to them.  

This is not say that an entity’s “new 
properties” are fictitious. Hemoglobin 
can transport oxygen. But the property 
of being able to transport oxygen, while 
true of hemoglobin, is not a label one 
finds attached to hemoglobin molecules. 
The conceptualization of the ability of 
hemoglobin to transport oxygen as a 
property of hemoglobin is an idea in our 
minds.19 

A second answer—also not related to 
Intelligent Design—is simply to look 

                                                                 

from an existing cell. How did the first cell 
form? We don’t yet know. 

19
  We discuss below why it is important for 
systems engineering to distinguish be-
tween ideas in our minds and properties 
of entities. 

around and see that it happens. The fact 
that entities come into existence means 
that nature provides some way for this 
to happen. It is our job as curious crea-
tures to understand it, not to deny its 
possibility.  

In attempting to understand how entities 
form we encounter the real mystery—a 
mystery deeper than we can explore in 
this paper. What are the primitive enti-
ties—if, indeed there are primitive enti-
ties—and how do they interact? In quan-
tum mechanics the primitive elements 
act as both particles and fields. As fields 
they interact because they inhabit a 
common environment of an assumed 
three-dimensional space—although that 
doesn’t seem to be the complete an-
swer. What is the mechanism, for ex-
ample, whereby fermions, e.g., elec-
trons, obey the Pauli exclusion princi-
ple? What mechanism prevents two 
fermions (but not two bosons) from oc-
cupying the same state?  

Of course if there were an answer to the 
“what mechanism” question, then the 
elements whose behavior is being ex-
plained would not be primitive. The al-
ternative is to say that there is no 
mechanism and that the Pauli exclusion 
principle is simply a fact of life. But that 
seems too arbitrary. Of course any set 
of primitive elements must be accepted 
axiomatically. But why these axioms? 

Smolin (2006) argues that to find a bet-
ter answer to these questions we need a 
background-free theory of fundamental 
physics. Such a theory would at least 
provide an explanation in  terms of itself 
and may seem somewhat less arbitrary. 
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5 Externalizing our thoughts 

5.1 Emergence and systems 
engineering 

As indicated above, emergence is cen-
tral to systems engineering. Virtually 
every important property of an engi-
neered system is emergent. Although 
we tend to think of human-produced and 
naturally occurring artifacts as different, 
emergent properties that result from an 
engineering effort differ from those that 
occur in nature only in that they are pro-
duced intentionally.  

Yet there tends to be a significant differ-
ence between these two kinds of sys-
tems. Human-built systems are often 
functionally fragile; their emergent prop-
erties don’t hold up as robustly as we 
would like. Naturally occurring systems 
tend to be more robust, flexible, and 
adaptable. Why is that? 

One reason is that human engineered 
systems are typically built using a top-
down design methodology.20 We tend to 
think of our system designs hierarchi-
cally. At each level and for each compo-
nent we conceptualize our designs in 
terms of the functionality we would like 
that component to provide. Then we 
build something that achieves that result 
by hooking up subcomponents with the 
needed properties. Then we do the 
same thing for the subcomponents. Etc. 

This is quite different from how nature 
designs systems. When nature builds a 
system, existing components (or some-

                                                
20

  Software developers gave up top-down 
design a quarter century ago. In its place 
we substituted object-oriented design—
the software equivalent of entity-based 
design. Below we suggest that it’s time for 
systems engineering to do likewise. 

what random variants of existing com-
ponents) are put together with no per-
formance or functionality goal in mind. 
(Nature doesn’t have a mind.) The re-
sulting system either survives in its envi-
ronment or it fails to survive.  

This approach doesn’t necessarily make 
nature a brilliant designer. Some of na-
ture’s designs are wonderful, and some 
suck.21 But significantly nature never 
has to satisfy a requirement.22 Systems 
engineers don’t have that luxury. But is 
there anything we can learn from how 
nature develops designs that we can 
apply in our work? 

5.2 Thoughts and things 
A useful way to think about the differ-
ence between systems designed to sat-
isfy requirements and naturally occur-
ring systems is that requirements-based 
systems typically result from an attempt 
to externalize our thoughts. We think, “I 
want a system that does this, this, and 
that—i.e., with these properties and be-
haviors.”  

Dreams of this sort, no matter how 
dressed up and legitimized in terms of 
formal requirements are still nothing but 
ideas in our minds. Use of the some-
what deprecatory term nothing but is 
intentional. Ideas by their nature can 
exist only in the mind of someone who is 

                                                
21

  Silver (this conference) points to “the 
panda’s thumb, the placement of the 
windpipe in front of the esophagus (so 
that food can go down the wrong tube), 
traversal of the urethra through the pros-
tate gland (so that if the prostate becomes 
inflamed and swells, it becomes difficult to 
urinate)” as examples of bad natural de-
sign. 

22
  Nor does nature have to work within 
budget and schedule constraints. 
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thinking them. That’s all an idea is and 
can ever be, a subjective experience in 
the mind of the idea’s thinker. (See Ab-
bott (2006a).) 

Yet when our ideas involve systems, we 
want more than just pretty mental pic-
tures. We want material embodiments of 
our ideas. We want to have the ideas in 
our heads converted into physical real-
ity. We want to externalize our ideas 
and to make them materially concrete.23 
And we often succeed—spectacularly. 
Much of what we experience in our post-
modern 21st century lives is the result of 
successfully externalized thought. 

But let’s consider what it means to ex-
ternalize a thought. There is no external-
ize button on our foreheads which, when 
pressed, causes our ideas to materialize 
as physical reality. One cannot simply 
imagine something and expect a mate-
rial embodiment of it to spring into exis-
tence. Furthermore, even when we do 
build something that reflects our ideas, it 
is impossible to create an external rep-
lica of a thought. Anything outside our 
heads is different from something inside 
our heads. Nothing outside our heads is 
an idea. The best we can ever do in ex-
ternalizing a thought is to create some-
thing that we can understand as repre-
senting—or perhaps better yet embody-
ing—that thought.  

5.3 Molding reality to re-
semble thoughts 

Consider a word processing computer 
program. We design word processors to 
(appear to) operate in terms of charac-
ters, words, paragraphs, etc. Charac-
ters, words, and paragraphs are ideas. 
Word processors operate (when de-

                                                
23

  This, of course, is the engineer’s credo. 

scribed at one reasonable level of ab-
straction) in terms of character codes, 
sequences of character codes bounded 
by white space character codes, and 
sequences of character codes bound 
together as what the word processor 
may internally refer to as a paragraph 
data structure. 

What we do when we attempt to exter-
nalize an idea is to mold elements of 
physical reality into a form onto which 
we can project the idea we want to ex-
ternalize.  That’s all we can ever do. We 
can never do more than mold existing 
reality.  

But even though we cannot incarnate 
our ideas as material reality, we can 
mold physical reality in such a way that 
it has—or at least appears to have—
properties a lot like those of the ideas 
we want to externalize. 24  

Thus there is always a tension between 
(a) building something out of real physi-
cal substance (even if that substance 
involves bits) and (b) externalizing one’s 
thoughts about what one wants.  

This tension is easiest to describe with 
respect to software—but it is true of 
every constructive discipline, including 
systems engineering. When one writes 
software, one is writing instructions for 
how a computer should perform. That’s 
all that one can ever do: tell a computer 
first to do this and then to do that. The 
this and that which the software tells the 
computer to do are the computer’s 

                                                
24

  My wife, an English professor, objected to 
my claim that word processors don’t work 
with paragraphs. They do such a good job 
of manipulating text in a way that corre-
sponds to her sense of what a paragraph 
is, that she wants to credit them with 
working with actual paragraphs. 
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primitive instructions. But what we want 
in the end is for the computer’s this-ing 
and that-ing to produce a result that re-
sembles some idea in our heads.  

Thus in software (as in any engineering 
discipline) our creations always have 
two faces: (a) a reality-molding face 
whereby the software tells the computer 
what to do and (b) a thought externaliz-
ing face which represents our ideas 
about what we want the result of that 
molding process to mean.  The eternal 
tension is to make these two faces 
come together in one artifact.25  

5.4 Thought externalization 
in computer science 

Because software can be about an ex-
traordinarily wide range of possible 
thoughts, computer science has had to 
face the reality-vs.-thought confrontation 
more directly than any other human en-
deavor. And possibly because software 
as text seems to be the only example of 
an artifact that directly embodies both 
aspects of this tension, computer sci-
ence has been relatively successful in 
finding ways to come to grips with this 
problem.  

Computer science has developed lan-
guages in which we can both express 
our thoughts and control the operation 
of a computer. We invented so-called 
higher level programming languages 

                                                
25

  Often the two faces of our creations come 
together as the concrete drives out the 
conceptual. We now think of airplane as 
meaning a physical airplane and not the 
idea of a heavier-than-air transport ship. 
Most likely we will soon think of paragraph 
as meaning whatever MS word pro-
duces—although we will continue to dis-
tinguish between well-structured and ill-
structured paragraphs. 

(Fortran being one of the earliest) in 
which one could write something like 
mathematical expressions which the 
computer would evaluate. We invented 
declarative languages (Prolog is a good 
example) in which one could write 
statements in something like predicate 
calculus and have the computer find 
values that make those statements true. 
We combined Prolog and Fortran when 
we invented constraint programming 
(which has not been as widely appreci-
ated as it deserves) in which one can 
write mathematical statements of con-
straints which the computer ensures are 
met.   

We invented relational databases in 
which one can store information about 
entity-like elements—along with their 
attributes and their relationships to each 
other. We invented languages that allow 
one to query those databases more or 
less on the level of that conceptualiza-
tion.  

We invented object-oriented program-
ming languages—which led naturally to 
agent-based and now service-oriented 
environments—in which one writes pro-
grams that (seem to) consist of interact-
ing entities.  

At the application level, virtually every 
computer program—from a payroll pro-
gram to a word processor to an image 
processing program—embodies an on-
tology of the world to which that applica-
tion applies.  

To help us write application programs 
we invented tools and frameworks that 
define meta-ontologies within which one 
can create a desired ontology.  

We did all this by writing programs that 
tell computers first to execute this in-
struction and then to execute that in-
struction. The gap between the underly-
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ing computer and the languages in 
which we write programs is often enor-
mous. But that doesn’t mean that we 
can forget about the computer. No mat-
ter what else it is, and no matter how 
well our programs (seem to) express the 
thoughts in our heads, a program is 
nothing unless it tells a computer which 
instructions to execute and in what or-
der. In the end, that’s all a computer 
program is: a means to tell a computer 
what to do.  

5.5 Computer science uses 
emergence to link ideas 
to reality 

Computer Science has been called ap-
plied philosophy:26 one can think about 
virtually anything as long as one can 
express those thoughts in a form that 
can be used to control the operation of a 
computer.  

I like to think of the computer as a reifi-
cation machine: it turns symbolically ex-
pressed abstract thought into concrete 
action in the physical world.27  

As a reification machine, the computer’s 
interface between thought and action is 
the computer program. When we write 
in a programming language we are ex-
pressing our thoughts in the program-
ming language—to the extent allowed 
by the language. When a computer 
reads what we have written, it takes our 
writings as instructions about what op-
erations to perform.  
                                                
26

  Fred Thompson, one of my early mentors, 
is now Emeritus Professor of Applied Phi-
losophy and Computer Science at Cal 
Tech.  

27
  With virtual reality we complete the cycle: 
generating real physical signals with the 
intention of producing particular subjective 
experiences. 

We have developed programming lan-
guages that allow us to express some-
thing close enough our thoughts that the 
resulting programs, when executed, can 
be identified with those thoughts. 

The primary technique computer scien-
tists use to build programming lan-
guages that allow us to externalize our 
thoughts is emergence. Recall that we 
defined emergence as a situation in 
which a property can be described inde-
pendently of its implementation. That’s 
exactly what a program specification is. 
Whenever we specify the desired be-
havior of a computer program inde-
pendently of the means by which that 
behavior is implemented, we are asking 
for the creation of an emergent phe-
nomenon. 

Emergence of this sort has a long his-
tory. Both axiomatic semantics (Hoare, 
1969) and denotational semantics (Ten-
nent, 1976) offer approaches to provid-
ing declarative specifications for com-
puter programs—which by intent are 
independent of the program’s implemen-
tation.  

More generally, workers in the fields of 
functional and logic programming have 
created programming languages (e.g., 
Haskell28 and Prolog29) in which the pro-
grams one writes may be understood as 
a declarative statement of one’s inten-
tions rather than as instructions to a 
computer.30  

                                                
28

 See http://www.haskell.org/. 

29
  For example, http://www.swi-prolog.org/. 

30
  However practitioners in both paradigms 
find that most “real” programs written in 
functional and logic programming lan-
guages generally cannot be understood in 
a fully declarative way. Virtually all real 
programs—no matter what the language 
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The ACM’s series of conferences on 
declarative programming31 explores the 
even more general question of what one 
can say about programs that is inde-
pendent of the steps the program in-
structs the computer to take.  

The prototypical example of emergence 
in software is the application program 
interface or API. An API characterizes 
what some software—generally the 
elements of a program library—will do 
when invoked in certain ways. A good 
API does not describe how the software 
will accomplish that result, just what the 
result will be. This is standard good 
practice about software design and 
specification. 

What is not often mentioned—perhaps 
because we all take it so much for 
granted by now—is that an API is gen-
erally explicated in terms of an ontology 
that may have nothing to do with the 
means by which the API is imple-
mented. As we indicated above, virtually 
every computer application is intended 
to implement a conceptual model, i.e., 
some externalized thought. The same is 
true for the APIs exposed32 by a soft-
ware library, application, or system.  

                                                                 

—must be understood operationally. This 
is understandable. One can never escape 
the fact that a computer program is nec-
essarily a means for instructing a com-
puter to act. 

31
  The International Conferences on Princi-
ples and Practice of Declarative Pro-
gramming (PDPP). See the website, 
http://pauillac.inria.fr/~fages/PPDP/. 

32
  Current usage favors the term expose to 
refer to API operations. The implication is 
that an API is a window into a secret onto-
logical world (the conceptual model) to 
which one has access only via the opera-
tions made available through the API. 

The ontology or conceptual model in 
terms of which a software system is de-
scribed is sometime referred to as a 
level of abstraction. In other words a 
software system creates an emergent 
ontological domain that can be ac-
cessed and manipulated in ways speci-
fied by its API.  

One of the primary threads in the history 
of computer science is the development 
of increasingly powerful ways to create 
new levels of abstraction. By providing 
ourselves with the means to create new 
ontological domains—which can then be 
used to build other ontological domains, 
etc.—computer scientists have used the 
power of emergence to create physical 
models of an extraordinarily wide range 
of thoughts.  

Although these externalized thoughts 
are far removed from low-level com-
puters operations, they are nonetheless 
still grounded by real computers execut-
ing one real physical instruction after 
another. In perhaps more familiar words, 
software development is both a top-
down (thought externalization) and a 
bottom-up (emergence) endeavor.33 

5.6 Thought externalization 
in systems engineering 

Systems engineering is just beginning to 
focus on this issue. Model-based devel-
opment, e.g., SysML, attempts to allow 

                                                
33

  Of course the “real” “physical” instructions 
that ground computer software are them-
selves emergent phenomena built on top 
of still lower level phenomena. Computer 
science owes its existence to the ability of 
electrical engineers to create an emergent 
digital world—of bits and instructions that 
manipulate them—that we can use as a 
platform on which to build our emergent 
creations. 
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systems engineers to think in a lan-
guage that both expresses our thoughts 
and represents how we mold reality. But 
systems engineering is at a significant 
disadvantage. In computer science we 
write in languages that control real com-
puters.34 There are no systems engi-
neering languages that generate real 
physical systems.  

When software developers write a com-
puter program, load it into a computer, 
and press the Start button, the computer 
becomes the program we have written. 
There is nothing comparable for sys-
tems engineers. We don’t have a sys-
tems engineering language and a de-
vice into which descriptions written in 
that language can be loaded that will 
become the system the language is de-
scribing once one presses a Start but-
ton.  

The closest systems engineering can 
come to this dream is to write in a lan-
guage that represents a model of a 
physical system. But models aren’t real-
ity. Programming languages succeed 
because they are grounded in the reality 
of an actual computer executing actual 
instructions. Models, in contrast, are al-
ways divorced from reality. One can’t 
ever model all aspects of a system. So 
one chooses what one considers a sys-
tem’s most important aspects and mod-
els those. But that’s always dangerous. 
See the discussion below about the dif-
ficulty of looking downwards.  

                                                
34

  UML is an unfortunate step back from 
computer science’s traditional loyalty to 
executable languages. 

5.7 Thought externalization 
in science 

Science may be understood as a similar 
process of thought externalization. Sci-
ence may be understood as a search for 
an explanation of how nature works. 
What that amounts to is a search for an 
explanation of a level of abstraction in 
terms of implementation mechanisms 
for the level of abstraction. In other 
words, scientists observe phenomena, 
which they describe in some terms that 
seem to fit the phenomena. Then they 
look for underlying mechanisms that ex-
plain why the phenomena seem to re-
flect or embody the observed abstrac-
tions. Much of early biology and chemis-
try, for example, fit this pattern quite 
well. These disciplines organized and  
catalogued biological and chemical enti-
ties into the well known biological tax-
onomies and the Mendeleev’s periodic 
table of the chemical elements. 

As in other forms of thought externaliza-
tion scientists develop ideas about how 
to think about nature and then look for 
ways to make those ideas concrete. In 
this case those ideas are based on ob-
served phenomena. Then they look for 
more concrete aspects of nature which 
can be understood as having brought 
about those phenomena.  The more 
concrete aspects of nature correspond 
to what in computer science we have 
referred to as known operations. The 
phenomenologically inspired level of ab-
stractions correspond to ideas that one 
wants to externalize.  

It is also the case that as in other forms 
of thought externalization, as one finds 
concrete ways of expressing one’s 
thoughts, the thoughts themselves be-
come better defined. As (Scerri, 2006) 
points out in his review of the develop-
ment of the periodic table, chemists 
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originally thought that atomic weight 
characterized chemical elements. We 
now know that it is the number of pro-
tons that characterize a chemical ele-
ment. In this way, the intuitive but infor-
mal idea of a chemical element that had 
known properties that differed from 
other chemical elements was refined 
and made precise by understanding that 
atoms are best grouped according to the 
number of protons they contain.  

The work of shaping existing concepts 
as a way of formalizing and formulating 
a thought appears to be an important 
aspect of thought externalization. An 
important part of thought externalization 
is the act of grounding a thought in con-
crete terms, i.e., of expressing it in 
terms that are—or at least appear to 
be—grounded in references to known 
reality. 

The challenge of science is often to dis-
cover previously unknown reality, e.g., 
the proton, to ground thoughts that we 
wish to externalize. Once grounded one 
often finds that the original thoughts 
were only approximations of what turn 
out to be more robust ways of under-
standing nature. 

6 Multi-sided platforms 
As discussed above, a level of abstrac-
tion encapsulates and embodies a spe-
cialized ontology (i.e., a conceptual 
model) of one sort or another. An ex-
traordinarily important kind of level-of-
abstraction is the multi-sided platform. 
Hagui characterizes a multi-sided plat-
form (from the perspective of the plat-
form as a business35) as one in which 
the platform provider must 

                                                
35

  Interview with Andre Hagiu, Working 
Knowledge, Harvard Business School, 
March 13, 2006. 

get two or more distinct groups of cus-

tomers who value each other's participa-
tion on board the … platform in order to 

generate any economic value. … Exam-
ples are pervasive in today's economy 

and range from dating clubs ([the two 

sides are] men and women), financial 
exchanges [such as a stock market], 

real estate listings, online intermediaries 
like eBay (buyers and sellers), ad-

supported media (ad sponsors and 
readers/viewers), computer operating 

systems (application developers and us-

ers), videogame consoles (game devel-
opers and geeks), shopping malls (re-

tailers and consumers), digital media 
platforms (content providers and users), 

and many others. 

When considered more generally, i.e., 
not necessarily as an business, a multi-
sided platform is a level of abstraction 
that provides a means, mechanism, or 
set of conventions for structuring and 
enabling interaction among parties—
especially parties that expect to benefit 
from the interaction.  

As Hagiu indicated, men and women in 
a dating club are able to interact be-
cause they belong to the same club. 
The same is true of merchants and 
shoppers in a mall and buyers and sell-
ers on eBay.  

In general, a multi-sided platform results 
from the factoring out of an aspect of an 
interaction. In the first three examples 
above, what’s factored out is (a) the 
process of finding the other party and 
(b) the formalism of making contact. In 
the sending-receiving interaction what’s 
factored out is the actual sending and 
receiving of mail and packages along 

                                                                 

http://hbswk.hbs.edu/item/5237.html. 
Hagiu is one of the authors of (Evans, 
2006). 



 

Abbott Putting Complex Systems to Work 17/34 

 

 

 

with a formalized way of making use of 
that service once it’s reified as a service 
on its own.  

By factoring out an aspect of an interac-
tion and providing it more efficiently, the 
platform makes the interaction more ef-
ficient for the parties and at the same 
time generally makes money for itself. 

Multi-sided platforms are extraordinarily 
pervasive. Any file extension (such as 
.doc, .exe, .pdf, etc.) that is associated 
with a file that is passed from developer 
to user (the two sides) is associated with 
a multi-sided platform. When people use 
such a platform to work collaboratively, 
both sides assume both roles.  

The platform itself consists of the soft-
ware that takes the file as input and 
“brings it to life”—allowing the user to 
use it as the platform enables.  

Many but not all programming lan-
guages define multi-sided platforms. 
Java does because both the user and 
the developer rely on Java to make use 
of software developed in Java. C++ isn’t 
because only the developer uses it. 
Software developed in C++ is created to 
run on the operating system itself as a 
platform.  

Browsers are multi-sided platforms. 
Software plug-ins to browsers such as 
Flash are platforms built on top of the 
platform provided by browsers.  

Google defines two multi-sided plat-
forms. The first is the platform that 
brings together web sites and web surf-
ers; the second is the platform that 
brings together web advertisers and 
web surfers. Google created the second 
platform—the one on which it makes it 
money—by giving away the first plat-
form. The second platform consists of 

the words people use in queries to the 
first platform. 

6.1 Multi-sided platforms 
create new interaction 
opportunities 

As exemplified by Google, multi-sided 
platforms often create interaction oppor-
tunities where they didn’t exist before.  
Other good examples are online mailing 
lists (such as YahooGroups) and bulletin 
boards. It is common wisdom that mail-
ing lists and bulletin boards have cre-
ated communities—and hence interac-
tions among members of those commu-
nities—that never would have come into 
existence otherwise. The same is true of 
multi-person games such as World of 
Warfare and Second Life, which are 
primarily communities rather than com-
petitions. Systems such as MySpace 
and FaceBook provide another sort of 
community building platform. The inter-
actions that occur on these platforms 
would almost certainly never had oc-
curred were it not for the existence of 
these platforms. 

6.2 Our multi-sided plat-
forms define our infra-
structure 

Once a commercial platform becomes 
established, conflicts may arise when 
the interests of the platform owner differ 
from those of the platform users. Pres-
sure may develop among platform users 
to  de-commercialize the platform and to 
move its governance out of the com-
mercial realm and to bring it under the 
control of the users.  

Our regulated utilities—such as power 
and telephone services—illustrate a 
successful combination of user govern-
ance and private ownership. Other plat-
forms, e.g., our road and highway sys-
tem, are owned and operated directly by 



 

Abbott Putting Complex Systems to Work 18/34 

 

 

 

the government. We find these plat-
forms so essential that we want to en-
sure that the interest of the platform us-
ers take precedence over the interest of 
the platform providers. 

Platforms such as these, along with the 
rest of our community-wide platforms 
(such as our transportation, package 
delivery, and mail systems36 and oth-
ers), define what we refer to generically 
as a community’s infrastructure. 

6.3 Standards and open 
source platforms 

Organizations that are able to establish 
a multi-sided platform as a widely used 
standard (explicit or de facto) are often 
able to profit from it. Familiar examples 
are Microsoft Windows and eBay.  This 
has led to the notion of what has been 
referred to as a network effect, namely 
that the value of a network increases 
more than linearly with an increase in 
the size of the network.37  

The literature on network effects seems 
not to identify platforms as the source of 
the value: networks hogs the spotlight. 
Nonetheless, it is the establishment and 
ownership of platforms that has eco-
nomic value. Thus platforms become 
very important to commercial organiza-
tions, who will fight to establish the 

                                                
36

  The platform that facilitates the electronic 
version of such interchanges is the collec-
tion of Internet email standards. See the 
Internet Email Consortium website 
(http://www.imc.org/mail-standards.html) 
for a list of email standards. We discuss 
below the importance of standards as 
platforms.  

37
  See (Briscoe, 2006) for an argument that 
the rate of growth is typically n log(n) 
rather than n

2
. 

dominance of their platform in a certain 
realm. 

There are (at least) three countervailing 
forces. The first, as we mentioned 
above, is the regulation and in some 
cases government control of platforms. 

The second is the adoption of neutral 
standards, i.e., standards that are nei-
ther controlled by nor tailored to the in-
terests of any particular vendor. When a 
vendor-neutral standard is defined for a 
platform, the platform functionality is de-
fined independently of any specific im-
plementation of that functionality. This is 
of to the benefit of platform users be-
cause vendors must then compete to 
provide better implementations of a plat-
form with a well-defined specification. 

Thus the most ephemeral of multi-sided 
platforms is the standard. Users of sys-
tems/components that adhere to a stan-
dard are able to interact with each other 
only because they both conform to the 
standard. 

The third force that mitigates the com-
mercialization of a platform is open 
source software. Many commercial sof-
tware products depend on platforms for 
their operation. The most widespread 
case is the dependence of software ap-
plication programs on operating sys-
tems. Consider the position of the de-
veloper of such a software product. He 
is essentially at the mercy of the plat-
form owner. Should the platform owner 
decide to enter the same market, that 
owner has an enormous advantage. The 
most widely known case is the way in 
which Microsoft destroyed the Netscape 
browser. No company wants to be that 
vulnerable. The developer of a software 
application will be motivated to support 
alternative platforms for his product. The 
most attractive alternative platform is 
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one that is neither controlled by a com-
mercial entity not regulated by the gov-
ernment. Hence it is not at all surprising 
that many commercial companies pro-
vide significant support to the develop-
ment of open source platforms.  

In a draft article, Iansiti and Richards 
(2007) analyse open source systems. 
They find that one can group open 
source software (OSS) into two catego-
ries: the "money driven cluster," which 
receives 99% of corporate funding of 
OSS and the "community driven clus-
ter," which receives very little corporate 
funding.  

The big four in the money driven cluster 
are Linux, Firefox, OpenOffice, and 
MySQL. All four are platforms that are 
central to how computers are used. The 
first three compete with platforms that 
are owned and controlled by a single 
for-profit company. No corporation 
wants to see the platforms on which its 
products depend subject to the profit 
calculations of some other commercial 
entity. It's no wonder that corporations 
are willing to spend money to strengthen 
publicly and openly controlled alterna-
tive platforms. 

6.4 Platforms as environ-
ments 

The preceding examples were all spe-
cialized platforms that support important 
but limited kinds of interaction. The 
more significant community-level multi-
sided platforms are those that structure 
economic interaction itself. The two 
most important are (a) the monetary and 
banking system and (b) the laws of 
commerce.  

By factoring out the economic notion of 
value, the monetary system is the multi-
sided platform that allows economic 

value to be abstracted, stored, ex-
changed, and transformed.  

Similarly, the laws of commerce (and its 
associated judicial and police system) is 
the multi-sided platform that enables 
economic agreements to be made and 
transactions to occur—both with an in-
creased level of confidence and secu-
rity. This latter multi-sided platform has 
factored out what would otherwise be 
the need on the part of the participants 
to establish their own enforcement 
mechanisms. 

As a society we clearly believe that 
these platforms should be controlled by 
the government and not by commercial 
organizations. 

6.5 Natural language as a 
platform 

An even more pervasive platform is lan-
guage itself. Our natural languages pro-
vide us means to interact. Language as 
a platform is different from most of the 
other platforms we have discussed in 
that it is implemented by each of us in-
dividually.  

Natural language is like a standard in 
that no one entity provides an imple-
mentation. It is like a standard in that we 
have dictionaries and grammar books 
and “standard English” reference im-
plantations. But clearly it is not a fixed 
standard; nor is it a standard whose 
precepts change only with the approval 
of the standardization committee.  

Natural language is also like open 
source in that its evolution depends on a 
large community of contributors. But it is 
even less structured than open source, 
most of which is controlled by a small 
group of top-level developers.  

As indicated above, the natural lan-
guage platform is implemented by each 
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of us individually. We each spend the 
first six years of our lives learning how 
to do that. Even though we are certainly 
not completely consistent about our pri-
vate implementations, it is really quite 
amazing that we all do it as consistently 
as we do and that it is as successful a 
platform as it is. 

6.6 Multi-sided platforms 
and systems engineering 

Like levels of abstraction in general, 
multi-sided platforms should be central 
to systems engineering. Unfortunately, 
they tend not to be. In systems engi-
neering we tend to focus on pair-wise 
communication among systems compo-
nents. Often that pair-wise communica-
tion is hierarchical; sometimes it is hori-
zontal. But in either case, we don’t think 
about factoring out any of the functional-
ity built into that communication. 

When working on interaction we often 
write what are called interface control 
documents (ICDs). But like the inter-
faces they specify, these documents are 
defined on a pair-wise basis.  

Recently, the notion of net-centric op-
eration has gained significant traction. 
That notion is built on the idea of the 
network as a platform. This, of course, is 
a very powerful idea—one that was in-
spired by the Internet—and one that we 
applaud. But the network as a platform 
is just one example. In software plat-
forms abound. As we said above, most 
file types correspond to platforms. It’s 
time for systems engineering to begin to 
conceptualize systems in terms of 
(a) levels of abstraction in general and 
(b) platforms in particular. We return to 
this theme below when we discuss ser-
vice oriented architecture. 

6.7 Multi-sided platforms as 
dynamic entities 

All multi-sided platforms are dynamic 
entities. As such they must extract en-
ergy from their environment to persist. 
Platforms such as Microsoft Windows, 
eBay, and regulated monopolies extract 
that energy by making a profit on their 
operations. Platforms provided by the 
government are supported by taxes and 
usage fees. At the other end of the 
spectrum the (much smaller amount of) 
energy needed for the persistence of 
standards making bodies is contributed 
by the individuals and corporations who 
see it as in their interest that the stan-
dard continue to exist as a non-
commercial enterprise. 

6.8 Platforms as both enti-
ties and environments 

As a level of abstraction, a platform is 
an entity. However, as our discussion 
makes clear, platforms are also envi-
ronments—or at least parts of environ-
ments. They are environments (or ele-
ments of an environment) for the parties 
that interact by making use of the plat-
form.  

In some cases, a platform is a complete 
environment. The platform consisting of 
the instruction and interrupt set of a 
computer establishes the complete envi-
ronment for software that runs in that 
computer—although the instructions and 
interrupts provide access to the larger 
world within which the computer itself 
exists.  

Similarly, the platform defined by a pro-
gramming language establishes a com-
plete environment for programs written 
in that language—with the same caveat 
as above.  

More familiar complete environments 
are the platforms established by 
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(a) simulation and modeling environ-
ments and (b) online multi-player 
games.38 

Because a level of abstraction, and in 
particular a platform, serves as both an 
environment and an entity, the level of 
abstraction (as a conceptual construct) 
is the fundamental notion in complex 
systems.  

6.9 Platforms and science 
Much of science can be understood as 
an attempt to explain phenomena in 
terms of previously established plat-
forms. The traditional hierarchy of the 
sciences is a simplified version of that 
perspective. 

Earlier we referred to the search for 
background-free models of fundamental 
physics. Such a background free model 
will almost certainly be formulated as an 
entity that serves as its own plat-
form/environment. What such a self-
referential entity/platform will look like is 
still uncertain. Many programming lan-
guages, for example Lisp,39 have been 
defined in terms of themselves. It’s not 
clear to what extent that sort of self-
definition can serve as a model for a 
self-referential entity/platform. 

                                                
38

 There are well-known “leakages” from 
multi-player game environments. Partici-
pants trade virtual possessions for real 
money. They also meet in person outside 
the game environment.  

39
  See John McCarthy’s website document-
ing the history of Lisp: http://www-
for-
mal.stanford.edu/jmc/history/lisp/lisp.html.  

7 Dissipative systems and dy-
namic entities 

Systems engineers tend to build special 
kinds of entities which are intermediate 
between static and dynamic entities. 
Prigogene coined the term dissipative 
system (see, for example, 1997) for a 
static entity that exhibits regularities 
when energy is pumped through it.40 
Most of the widely cited examples of 
dissipative systems consist of relatively 
unstructured static entities that exhibit 
somewhat surprising structures—e.g., 
Rayleigh-Benard convection patterns—
when they are forced to respond to en-
ergy inputs.  

But virtually any static entity will exhibit 
some response to an energy flow—
especially when that energy flow is both 
sufficient to have some noticeable effect 
on the entity and moderate enough not 
to destroy it. Much of what engineers 
build, e.g., automobiles and computers, 
are static entities whose (necessarily 
dissipative) responses to energy flows 
are in some way useful to us.  

7.1 Dissipative systems vs. 
dynamic entities 

A dissipative system is intermediate be-
tween a static entity and a dynamic en-
tity in that it consists of a static entity 
skeleton (which is more or less stable 
without an energy flow) through which 
one pumps energy. Dynamic entities do 
not have such stable static skeletons. 
Dynamic entities depend on their own 
ongoing processes to maintain their 
structures.41 A living organism, a hurri-
                                                
40

  That’s my summary of what a dissipative 
system (also known as a dissipative struc-
ture) amounts to. 

41
  See (Abbott, 2007) for a more detailed 
discussion. 
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cane, or a government would not persist 
even as a skeletal structure without a 
continual flow of externally supplied en-
ergy.  

By working primarily with dissipative 
static entities engineers save them-
selves from having to build systems that 
are continually rebuilding and repairing 
themselves. But the price for that con-
venience is that the systems we build 
are not self-persistent.  

7.2 Self-persistent dynamic 
entities 

To date, we don’t know how to build 
systems that persist on their own. To the 
extent that we try it at all, our approach 
tends to be backwards: design a dissi-
pative static entity and then add features 
to it that might allow it to repair itself. 
That isn’t how naturally occurring dy-
namic entities work. Most naturally oc-
curring dynamic entities are built to be 
self-persistent—although not eternal—
from their core.  

A hurricane 
Original image from NASA 

A hurricane, for example, maintains its 
structure simply because of how it is or-
ganized. The same is true for a govern-
ment and a living cell. 

Much of what goes on in a cell is cell 
maintenance—which is not the same as 
self-organization, which we said was a 
distraction. Here’s how Frank Harold 

(2001) describes this aspect of a cell’s 
functioning. 

Is the cell as a whole a self-assembling 
structure? ... Would a mixture of cellular 

molecules, gently warmed in some buffer, 

reconstitute cells? Surely not, and it is 
worthwhile to spell out why not. One rea-

son is [that] assembly is never fully 
autonomous, but involves [pre-existing] 

enzymes or regulatory molecules that link 

[developing elements] to the larger whole. 
But there are three more fundamental rea-

sons … First, some cellular components 
are not fashioned by self-assembly, par-

ticularly the … cell wall which resembles a 
woven fabric and must be enlarged by cut-

ting and splicing. Second, many membrane 

proteins are oriented with respect to the 
membrane and catalyze vectorial reac-

tions; this vector is not specified in the 
primary amino acid sequence, but is sup-

plied by the cell. Third, certain processes 

occur at particular times and places, most 
notably the formation of a septum at the 

time of division. Localization on the cellular 
place is not in the genes but in the larger 

system. Cells do assemble themselves, but 
in quite another sense of the word: they 

grow.42 

Compared to a cell a hurricane is some-
what ethereal or insubstantial—strange 
as that term may seem when applied to 
hurricanes. Hurricanes have no material 
skeletal framework that holds them to-
gether. Cells clearly do—although unlike 
static entities a cell’s structural frame-
work requires fairly frequent mainte-
nance. Because a hurricane has no 
skeletal framework it would appear not 
to be a good candidate as a starting 
point for additional functionality: there 

                                                
42

  Recall our previous discussion of self-
referential entities. This passage illus-
trates how self-referential cells are.  
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are no attachment points for adding any-
thing on. 

Perhaps an even more significant differ-
ence between hurricanes and cells is 
that a hurricane has no DNA. Contrary 
to the popular image, DNA is not an in-
ternal representation of a cell’s (or any 
biological organism’s) design. A more 
appropriate way to think about DNA—
along with the protein-manufacturing 
machinery that accompanies it—is as an 
internal “factory” that converts raw mate-
rials into the physical stuff out of which a 
cell’s (or more generally a biological or-
ganism’s) material framework is com-
posed.  

As Harold points out, DNA does not in-
struct a biological organism how to use 
the proteins that are generated; DNA is 
not a master plan for the cell. DNA and 
its associated mechanisms simply gen-
erate proteins—the disposition of which 
is taken care of outside the DNA 
mechanism.43 Since hurricanes have no 
such skeleton they have no need for 
mechanisms that keep that skeleton in 
good repair. 

It would seem that if we are to build self-
persistent systems, the first step is to 
learn how to build minimal dynamic enti-
ties that have as their core (a) a means 
for converting available raw materials 
into the substances needed to create 
and maintain their physical structures 
and (b) mechanisms for using those 
generated materials for self-persistence.  

This is quite a trick. A cell manufactures 
its own building blocks and then uses 

                                                
43

  Of course DNA and its associated 
mechanism are responsible for determin-
ing when particular proteins are gener-
ated—which also is a primary factor in de-
termining how the proteins are used. 

those building blocks to keep itself in 
good repair. A hurricane doesn’t manu-
facture anything, but it does use the raw 
materials at hand (water vapor, rain 
drops, air, etc.) to maintain its structure. 
Since it doesn’t manufacture anything, 
and since the materials at hand are 
fairly insubstantial as building blocks, a 
hurricane’s structural framework is itself 
insubstantial. 

After we learn how to build dynamic en-
tities that have the ability to convert 
available materials into structural build-
ing blocks, then we can move on to add-
ing additional functionality. Two exam-
ples of additional functionality oxygen 
transport and mobility. The DNA mecha-
nism is used to produce hemoglobin, 
which is not a building block for cell 
structures. But once a mechanism exists 
for building proteins like hemoglobin and 
once a mechanism exists for transport-
ing material throughout an organism, 
oxygen transport becomes possible. 
Similarly, cells have features that allow 
them to move themselves about in their 
environments—another bit of functional-
ity that was added on to a cell’s basic 
structure.  

The lesson is that once the mechanism 
for producing building-block materials is 
in place, it then makes sense to exploit 
that mechanism to create new function-
ality.44 But until we learn how to build 
basic self-provisioning dynamic entities 

                                                
44

 In the section to follow we will see that the 
technique of building new capabilities on 
top of existing capabilities is one of na-
ture’s standard tricks—and one that we 
would do well to emulate. 
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we will be stuck with dissipative static 
entities.45  

7.3 Wikipedia as a case 
study of a complex sys-
tem 

Wikipedia—the social entity consisting 
of the software and the people who 
keep it going—is a very public example 
of what may not at first seem like a tradi-
tional complex system. Yet it has all the 
properties of a complex system. It is 
multi-scalar. It includes (at a very broad 
level) the MediaWiki platform on which it 
runs, the Wikipedia conventions and 
Templates that make give it some over-
all consistency, the users who contribute 
content, and the users who make use of 
that content. 

Furthermore Wikipedia, like all dynamic 
entities is both deployed and under de-
velopment simultaneously. Like a bio-
logical organism, Wikipedia exists and 
functions in the world at the same time 
that it is undergoing development and 
self-repair. The MediaWiki software is 
open source software that continually 
being modified and extended. Similarly, 
Wikipedia content is also continually be-
ing extended at the same time that it is 
used by others.  

Like most dynamic entities Wikipedia 
also has very effective mechanisms for 
self-repair. Editors and other users con-
tinually monitor pages for damage, 
which they repair very quickly whenever 
it occurs.  

                                                
45

  Of course, like Theseus’ ship, most of the 
large systems we build are embedded 
within social dynamic entities that provide 
for their maintenance—although we too 
rarely conceptualize our systems that 
broadly.   

Wikipedia is also a nice example of a 
multi-sided platform. The two most obvi-
ous sides are the readers and the con-
tent providers. (At the MediaWiki level, 
the two other sides: the software devel-
opers and the web site as a software 
product.) Often a single person interacts 
with Wikipedia in different roles at differ-
ent times. As a multi-sided platform, 
Wikipedia is also a system of systems.  
It may also be seen as a system of sys-
tems from the perspective of the various 
systems that keep it operational. These 
include the source code maintenance 
system, the mechanisms it uses to 
“serve” itself as web pages, and the 
Wikipedia Foundation, which plays a 
major role in governance, operation, and 
now fund-raising.  

8 Service-oriented design 
Much of what succeeds in nature con-
sists of processes that build on other 
processes. Food web analysis illustrates 
how species depend on other species. 
Ecologies are built on seasonal cycles 
and resources flows (energy from the 
sun being the most basic but ocean and 
river currents being other examples). A 
species, a seasonal cycle, and a re-
source flow can all be understood as 
emergent phenomena.46 In other words, 
nature builds new emergent phenomena 
on existing emergent phenomena.  

When this happens in an ecological sys-
tem, we call it succession47—a territory 
proceeds though a series of relatively 
stable stages.48 At each relatively stable 

                                                
46

  See (Abbott, 2006) and (Abbott, 2007). 

47
  See, for example, 
http://www.mansfield.ohio-state.edu/ 
~sabedon/campbl53.htm.  

48
  This resembles what on an evolutionary 
scale we refer to as punctuated equilib-
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stage, the species that populate that 
stage depend on each other and on the 
other aspects of the environment.   

Progression occurs either because 
something disturbs the status quo and 
destroys some of the structures on 
which some of the participants depend 
or because there is an inefficiency in the 
system that can be exploited by some 
new mechanism. 

This is pretty much the same picture 
one sees in a market-based economy. A 
collection of products, services, and 
community-supplied infrastructures 
(such as a monetary system, a postal 
system, a judicial system, etc.) develops 
into an ecology of mutual dependencies. 
Such a system remains stable until ei-
ther a disturbance destroys something 
on which part of the system depends or 
a new way is found to use some of the 
available energy.  

Natural ecologies and market econo-
mies are both examples of what we call 
innovative environments—which we dis-
cuss below. In this section we focus on 
how such environments work and how 
the principles underlying how they work 
may be applied to system design.  

The fundamental principle of innovative 
environments is that new things are built 
on top of existing things. Because we 
have a well-developed transportation 
system, for example, we can produce 
products in one location and move them 
to other locations to be consumed—or 
otherwise used. One doesn’t have to 
develop a transportation system from 

                                                                 

rium. The difference is that in succession 
outside species replace existing species 
in a habitat. But the outside species are 
not generally created as new species. 

scratch in order to establish an off-shore 
production facility. 

This web-of-interrelationships perspec-
tive has implications for systems engi-
neering from two perspectives.   

8.1 Products and services 
evolve 

Even though most marketed products 
and services tend to originate as exter-
nalized thought, well-managed compa-
nies are always looking for new applica-
tions of their products—even applica-
tions that have little to do with the origi-
nally conceived market. In other words 
products and services evolve to fit their 
environments.49   

Products and services that survive over 
the long term are not stuck attempting 
forever to implement the original vision 
of what they were intended to be. A 
product or service may have been born 
of externalized thought, but the original 
externalized thought is not considered a 
constraint on the evolution of the prod-
uct or service. It’s the environment that 
determines how a product or service will 
evolve.  

In order for a product or service to 
evolve, its design must support change. 
If a system is designed in such a way 
that modification of that design is not 
feasible, it will die. Thus any system that 
is expected to survive over the long term 
must have evolvability as a primary de-
sign consideration.  

                                                
49

  We have all encountered the now familiar 
version progression among software 
products. Version 5.0 is frequently quite 
different from version 1.0. It might even 
serve a significantly different customer 
base. 
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Unfortunately, we tend not to build sys-
tems this way. Customers often want a 
set of functional requirements satisfied 
as inexpensively as possible. Normally 
that entails sacrificing design flexibility 
and evolvability for a rigid focus on spe-
cific functionality.50  

Furthermore, for a product or service to 
survive it must be robust. We don’t build 
products for robustness except to the 
extent that the requirements specify a 
specific degree and form of robustness.  
Of course one aspect of robustness is to 
survive the unanticipated. So in some 
sense requiring robustness is a self-
contradiction.  

8.2 Products and services 
are built on top of an es-
tablished base of other 
products and services 

The second and perhaps more signifi-
cant lesson to be learned from the web-
of-interrelationships perspective is that 
when building something new it’s a good 
idea (actually more than just a good 
idea) to make use of existing products 
and services. This is quite different from 
how most of our systems work.  
                                                
50

  This is one reason why it is a bad idea for 
a customer ever to buy a major system. If 
the system developer has a financial in-
terest in seeing the system flourish over 
the long term, that developer will (pre-
sumably) design it to allow it to evolve. In 
contrast, a customer, who has no idea 
about these sorts of things, cannot define 
evolvability as a requirement. (We don’t 
know how to do that in any case.) Even if 
the customer could require evolvability as 
a product property, he or she would 
probably not be in a position to exploit it. 
After all it is the developer who is on the 
lookout for new uses of the system, not 
the individual customer. 

As we said earlier, we tend to build sys-
tems hierarchically. We formulate a top-
level design that meets top level re-
quirements and then determine what  
components we need to implement it. 
We then decide how to build the com-
ponents in terms of sub-components, 
etc. This approach doesn’t take advan-
tage of existing products and services 
except when we use standard parts—
and we do that too rarely.   

A hierarchical design approach has (at 
least) two disadvantages. Firstly, it 
tends to result in what have been called 
stove-piped systems—systems that may 
work successfully on their own but that 
are very difficult to use in conjunction 
with other systems. That such a conse-
quence will occur is quite understand-
able. When a system is built from the 
top-down without regard to what else 
exists, it is likely to be incompatible with 
other systems.  

Secondly, the internal design of such 
systems tend to be rigid in the same 
way. Just as a hierarchically designed 
system isolates itself from other sys-
tems, the system components of a hier-
archically designed system isolate 
themselves from other system compo-
nents.  Hierarchical design results in 
stove-piping both inside and out. 

The alternative is to take advantage of 
what exists and build on top of it. In 
software there are now innumerable 
tools, frameworks, components, and li-
braries (both open source and commer-
cial) that serve as the basis for further 
development.51  

                                                
51

  The term level of abstraction is some-
times used to characterize the use of an 
abstract specification of a service as part 
of a design. 
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The prototypical example of building on 
top of existing products and services is 
a service-oriented architecture (SOA).52 
Service oriented architecture is a nice 
example because it illustrates how sys-
tems can be built on top of existing ele-
ments at both the system-to-system and 
internal design levels.   

Through an SOA, systems can provide 
services for other systems.53 Similarly 
system components can provide ser-
vices for other system components 
through an SOA. In both cases, one is 
building on two foundations: (a) the net-
work itself as a service (e.g., a level of 
abstraction) that all elements that reside 
on it use and (b) the design principle 
whereby elements provides service for  
each other.  

It’s a positive development that service-
oriented and net-centric architectures 
are becoming desirable attributes within 
the systems engineering world.  

It’s important to remember that SOA and 
net-centricity are examples not princi-
ples. The principles are (a) build on top 
of existing capabilities and (b) concep-
tualize whatever one builds as a service 
that others will use, not as an end in it-
self. 

                                                
52

  This is a design fad that has staying 
power. It’s useful to think of our entire 
economic system as a service oriented 
architecture: every economic transaction 
is essentially a service transaction. The 
SOA nature of our economic system is 
one of the reasons it is both strong and 
agile. 

53
  Hence SOA provides a natural framework 
for exploring system-of-systems issues. 

8.3 Dynamic entities need 
energy to persist 

The second principle captures one dif-
ference between most systems engi-
neered systems and systems that ap-
pear either in nature or in a market-
based economy.  

The systems we are talking about are 
almost all dynamic entities. They are not 
just static objects, they generally do 
something as a result of energy flows. 
Even static objects, such as a bridge, 
require maintenance. The real system is 
not just the static bridge. The real sys-
tem is the bridge along with the mainte-
nance process that keeps the bridge in 
good repair.54 When understood from 
that broader perspective, it’s clear that 
most of the systems that systems engi-
neers build are dynamic entities. 

Dynamic entities persist only as long as 
the energy that flows through them con-
tinues to flow. For a business, which is 
also a dynamic entity, money is a proxy 
for energy. A business exists only while 
the money flowing into it is at least as 
large as the money flowing out of it.  

Unfortunately, it very rare that we ask 
ourselves about the energy flows 
needed for the persistence of the sys-
tems that we are asked to build. Long 

                                                
54

  This perspective explains the Theseus’ 
ship paradox. Is a ship maintained in port 
so long that all its parts have been re-
placed “the same ship” as the original? 
The answer is that the ship maintenance 
process is the same entity (even if it in-
volves numerous people cycling though 
it—a property of entities). The physical 
ship is just a component of that social en-
tity in much the same way as our (re-
placeable) bones are a component of 
ourselves as entities. 
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term energy flow considerations (i.e., 
funding) should be fundamental to any 
system development project. But it gen-
erally isn’t. Because it isn’t we don’t 
think about systems in terms of what it 
would take to make them self-persistent.  

This is not to say that every system 
must be profitable in the traditional 
sense of profitable.  Many of our sys-
tem, e.g., our judicial and monetary sys-
tems are both so central to the function-
ing of our society and so ill suited to be 
funded by their direct customers that we 
properly treat them as a commons. 
Commons too must be funded, but they 
are funded in different ways from most 
entities.55  

But whether the system we are building 
is expected to be a commons or self-
sustaining, we must understand from 
the start how the energy flow required to 
allow it to sustain itself will be provided. 

In business the answer to this sort of 
question would be recorded in a busi-
ness plan. In systems engineering we 
don’t have a name for where we record 
answers to these questions because we 
rarely ask these questions. 

9 Feasibility ranges 
Emergence occurs within feasibility 
ranges. A visible and tragic illustration of 
this is the Challenger disaster in which 
the O-rings lost their (emergent) sealant 
property because the temperature was 
too low.  

Since there are always feasibility ranges 
for emergent properties56 we should 
make it standard practice to identify and 
                                                
55

  Elinor Ostrom (1990) began the modern 
era of understanding how successful 
commons function. 

56
  See (Abbott, 2006). 

determine the feasibility ranges of each 
emergent property we expect our sys-
tem and system components to display. 
For each emergent property we should 
explain why its feasibility range won’t be 
violated—and what happens if it is.  Had 
this been done for the Challenger, we 
would not have lost our astronauts.  

For computer and software systems, 
feasibility range concerns typically in-
volve such issues as data rates, access 
rates (for quality of service issues), data 
storage demands, assumed data (and 
other input) ranges and limits, computa-
tional demands, accuracy assumptions, 
and precision needs. In software these 
are often lumped together as perform-
ance (as distinguished from functional-
ity) issues.  

Although many of these issues are not 
new, it is useful to see them as in-
stances as the more general category of 
emergence feasibility ranges and to be 
aware that feasibility range issues arise 
throughout our systems. 

Feasibility range issues are often or-
thogonal to other design considerations. 
The term cross-cutting is typically ap-
plied to such situations. In software, as-
pect-oriented programming (and in 
some cases creative application of con-
straint programming) may be used to 
handle cross-cutting issues. I am not 
aware of a standard approach for han-
dling cross cutting issues in systems 
engineering. 

10 Modeling and Simulation 

10.1 For want of a nail …  
An important characteristic of most 
complex systems is that they are multi-
scalar. Every system that exhibits emer-
gence exists on at least two scales, the 
scale at which the emergent property 
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appears and the scale at which the 
emergent property is implemented. Of-
ten there are many more scales. This is 
especially true when emergence is built 
upon emergence, as it often is. The 
poem telling the story of how a missing 
horseshoe nail led to the loss of a king-
dom illustrates the potential significance 
of multiscale phenomena. 

Much of the work in systems engineer-
ing relies on the results of simulations. 
We build models of possible system de-
signs, and we run them, watching what 
happens as we vary the parameters.  

Even with our advanced modeling and 
simulation capabilities, however, it 
would be virtually impossible for us to 
model all the nails in all the horseshoes  
on all feet of all the horses ridden by all 
the men in King Richard’s army. Cer-
tainly we can’t do anything remotely like 
that if we were to model today’s mas-
sively larger systems. 

Since we depend profoundly on simula-
tions, and since we are unable to simu-
late our intended systems at the many 
scales at which we build them, and 
since multi-scale phenomena pose a 
potential threat to successful systems 
engineering, what are we to do?  

This is a major research issue and one 
for which I have no answer. In (Abbott, 
2006b) I called this the difficulty of look-
ing downward. The first step, though, is 
to recognize that we have a serious 
problem. 

10.2 For want of imagination 
… 

Imagine (unrealistically) that we were 
able to simulate our air transportation 
system and everything else relevant to 
how airplanes are used and maintained 

in this country. Would that capability 
have helped prevent 9/11?  

My answer is “No.” The problem is that 
we have no idea how to build simula-
tions that can identify emergent phe-
nomena—or even more difficult, how to 
identify the possibility of emergent phe-
nomena.  

Earlier we urged that new systems be 
built on top of existing capabilities. 
That’s exactly what the 9/11 terrorists 
did. They used the capability provided 
by the airlines of carrying and delivering 
large amounts of explosive material to 
virtually any location within the country. 
All the terrorists had to do was to take 
over the planes at the critical times—a 
brilliant example of using an existing ca-
pability to produce a new capability. 

We know how to write simulations in 
which emergence occurs. Any agent-
based model is capable of fostering 
emergence. But we don’t know how to 
write simulations that will recognize that 
emergence has occurred and issue a 
report about it. In (Abbott, 2006b) I 
called this the difficulty of looking up-
ward. 

This is a nice illustration of the difficulty 
of upwardly predicting emergence. Let’s 
return to our fully accurate simulation of 
our air transportation system. Suppose it 
included (a) airplanes accidentally 
crashing into buildings and (b) air hijack-
ings. Perhaps in such a virtual world, a 
hijacked airplane accidentally crashed 
into a building, destroying it. Even so, it 
is difficult to imagine that the simulation 
would be able to predict the intentional 
hijacking of an airplane for the purpose 
of crashing it into a building.  

A system might be able to make such a 
prediction if it were (a) programmed to 
look for instances of significant destruc-
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tion (and categorize the accidental crash 
as such an instance), (b) able to con-
clude that the accidental crash could 
also be caused intentionally, and 
(c) aware of the possibility of suicide ac-
tions.  

The ability to make those observations, 
draw those inferences, and predict a 
9/11 type of attack goes far beyond 
what one would normally find in an air 
transportation simulation—and probably 
far beyond any system so far yet devel-
oped. 

11 Software that generates new 
ideas? 

In this section we explore what might be 
required to build a system that could 
generate the idea of attacking the World 
Trade Center with hijacked airplanes. 

I know of no system that is capable of 
generating new ideas. For all the ad-
vances we have made in externalizing 
particular modes of thought and concep-
tual models, we do not yet know how to 
externalize the idea of an idea in any-
thing like its full richness.  

In saying this we are assuming that 
(a) ideas themselves exist only in the 
minds of their thinkers, i.e., only as sub-
jective experience and that (b) com-
puters don’t have subjective experience. 
An immediate consequence of this is 
that computers don’t have ideas as we 
understand them. So the best we can 
possibly hope for with current technol-
ogy (and with any technology that we 
can currently envision) is that we might 
be able (a) to externalize the process of 
generating new ideas and (b) to execute 
that externalized process as software.  

To do this we would have to find a way 
(a) to represent the idea of an idea and 
(b) to generate new ones artificially. To 

use the example from the previous sec-
tion, we would have to develop a com-
puter systems that could come up with 
an idea such as, “let’s use a commercial 
airplane as a weapon to be wielded by a 
suicide hijack crew.”  

To accomplish this, four technologies 
would have to be brought together: 
knowledge representation, ontology 
generation, modeling and simulation, 
and exploratory search.  

The question of how to represent ideas 
in general has long been a subject of 
study within computer science. Brach-
man (2004) provides a survey of the 
current the state of the art of knowledge 
representation. Most of the material in 
that book is well known. It’s surprising 
how disappointing and stale it seems. 
As well as we have done in building 
computer systems that externalize par-
ticular realms of thought, we have done 
surprisingly poorly at externalizing think-
ing as such. There is nothing in Brach-
man (or anywhere else) that suggests 
that we have any new ideas about how 
to write a computer program that can 
represent ideas in general. 

If we think of knowledge representation 
as a structure for representing ideas, we 
need a way to populate such a knowl-
edge representation database. That’s 
the subject matter of ontology. Ontology, 
of course, is as old as philosophy. What 
is needed here is an ontology that is 
both rich enough to have the potential to 
be the source of new ideas and flexible 
enough to be able to incorporate new 
ideas as they are generated. The two 
most active projects in this area are the 
various Semantic Web projects and 
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Cyc57. These show promise, but none 
seem mature enough to be put to work 
in generating new ideas. 

The third area is modeling and simula-
tion. Once one has an ontology cap-
tured by some knowledge representa-
tion formalism, to make real use of it, 
one needs more than static informa-
tion.58 But executing a generic ontology 
is far beyond our current state-of-the-art.  

To take a simple example, we are not 
currently able to simulate a multi-level 
model of a diamond—a simple static 
entity. On one level the simulation would 
illustrate how the diamond is held to-
gether as a lattice by atomic forces. On 
a second level the simulation would il-
lustrate how the diamond as a whole 
moves through space. A third and even 
more difficult combination of these lev-
els would show how a diamond can be 
used to cut glass. Since a diamond is a 
relatively simple static entity, imagine 
how far we are from being able to build 
adequate multi-level simulations that 
involve dynamic entities. Imagine, for 
example, building a simulation of an 
evolutionary arms race in which insects 
and plants compete with each other by 
growing bark, evolving a bark boring ca-
pability, or evolving toxic compounds. 

                                                
57

  See http://www.w3.org/2001/sw/ and 
http://cyc.com/ respectively. 

58
  Cyc contains lots of static information 
about its subject matters. But it has no 
way to execute operations that the ele-
ments of its database are able to perform. 
Perhaps for that reason Cyc seems par-
ticularly weak in its catalog of verbs. 

Finally, exploratory search, e.g., genetic 
algorithms and genetic programming,59 
is needed to allow our system to explore 
various possibilities and come up with 
ones that achieve its objectives.  

Work in all four of these areas is ongo-
ing, but I am not aware of any current 
projects that attempt to integrate these 
area in a system that would be powerful 
enough to generate an idea such as the 
one that resulted in the destruction of 
the World Trade Center. To do so would 
achieve the original grand dream of arti-
ficial intelligence. We are still far from 
that goal. 

12 Innovative environments  
We end this survey on a positive note. 
As we have seen, emergence occurs in 
a wide range of situations. Four envi-
ronments that are justifiably celebrated 
for an outpouring of emergent phenom-
ena are the Internet (in particular the 
World Wide Web), the U.S. (and now 
the global) market-oriented economic 
system, our system of scientific re-
search, and biological evolution.  

Although quite diverse in their underly-
ing domains, all four have been extraor-
dinarily fruitful and have fostered an 
ever-broadening flow of innovative 
products, services, and other ele-
ments.60  

                                                
59

  See, for example,  
http://www.aaai.org/AITopics/html/genalg.
html. 

60
  Transformation in the Defense Depart-
ment—including capability-based acquisi-
tion, net-centric operations, and service 
oriented architectures—has been moti-
vated at least in part by a desire to pro-
duce similar benefits within the DoD. 
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Although it is widely believed that envi-
ronments that enable and facilitate 
emergence share some common  char-
acteristics, we have no universally ac-
cepted list of exactly what those charac-
teristics are or why they matter. Which-
ever characteristics appear on a final 
list—if there is a final, definitive list—the 
following (or variants thereof) are likely 
to be candidates.  

1. Access to a supply of externally 
provided energy and means for 
exchanging it. All environment that 
foster emergence are what is com-
monly known as far from equilibrium: 
externally supplied energy continu-
ally flows through them. The overall 
creative process can be summarized 
as consisting of finding increasingly 
innovative ways of using the avail-
able energy. To facilitate this proc-
ess, mechanisms must be available 
to support the fungibility of energy 
and its proxies such as money, 
power, and attention.  

2. Standards. New products, services, 
and other items are almost always 
created from existing products, ser-
vices, and other items. Composition 
is greatly facilitated when the ele-
ments to be composed adhere to 
widely accepted standards. Stan-
dards facilitate the composition of 
products and services to produce 
new products and services. 

3. Communication and transporta-
tion infrastructures. Communica-
tion and transportation infrastruc-
tures facilitate the exchange/trans-
fer/flow of (a) information throughout 
the environment and (b.1) energy (in 
one direction) and (b.2) products 
and services (in the other) among 
trading partners. 

4. A reasonable level of confidence 
in the stability and continuity of 
the products and services in-
stalled in the environment. 
Mechanisms must be available to al-
low agreements to be made and for 
installed products and services to be 
relied upon.  

5. Minimum overhead. Cultural or 
other mechanisms must exist to dis-
courage corruption along with en-
forcement mechanisms to make it 
harder to siphon off energy flows for 
non-productive uses. More gener-
ally, the environment must incorpo-
rate mechanisms that minimize the 
overhead of participating in the envi-
ronment.  

6. Both (a) centralized but quasi-
democratic and transparent gov-
ernance of the overall system, its in-
frastructure, and the standards mak-
ing process and (b) decentralized 
overall control (“power to the 
edge”) in which as much autonomy 
as possible is ceded to environment 
participants.  

7. Mechanisms that ensure that a 
certain amount of the available 
energy is devoted to the explora-
tion of the space of possible new 
elements. There must be some 
means to encourage the exploration 
of new possibilities. 

8. Mechanisms that allow new prod-
ucts and services to be developed 
and installed in the environment 
and then made known to other par-
ticipants in the environment. 

9. A primarily bottom-up means for 
allocating energy (or its proxies) 
according to use: the more (less) 
useful a product or service is found 
to be (according to actual usage), 
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the more (fewer) resources it will 
have at its disposal. This implies a 
market-like means for allocating 
most of the resources available in 
the environment. All of the partici-
pants in the environment must be 
self-sustaining in terms of  their 
overall energy transactions. Since 
the environment itself is predicated 
on an external source of “free” en-
ergy, this should be possible. 

10. An ability to form communities of 
interest (formal, informal, voluntary, 
and fee-based) to facilitate the shar-
ing of information, experience, and 
expertise. The value of shared in-
formation is typically enhanced when 
it is shared in groups.  

11. Both (a) sufficient stability of the 
overall environment that partici-
pants can establish regularized  
modes of participation and 
(b) (generally collaborative) means 
to allow the environment to 
evolve as conditions change. This 
implies treating the environment as a 
commons and finding a successful 
way to govern it as such.61 

Innovative environments are important 
to systems engineering for at least three 
reasons.  

1. We want the systems we build (or at 
least many of them) to be innovative 
environments. Look at how the ex-
ample of the internet has inspired 
transformation in the DoD. We want 
the other systems we build to further 
enable that vision and to provide ad-
ditional innovative environments for 
our customers. 

                                                
61

  Ostrom’s work on commons (1990 and 
more recent work, not cited) is directly 
relevant here. 

2. We want our own processes to be 
innovative. As we build systems, we 
want to encourage innovation 
among our analysts and develop-
ers.62  

3. We want our own intellectual envi-
ronment to be innovative. Systems 
engineering is constantly innovating; 
it has never stood still. This sympo-
sium is an example of continued 
vigor. We want to encourage innova-
tion in our systems engineering 
community. 

As we understand more about how to 
make environments innovative, we will 
become more and more successful in 
achieving these goals. 

13 Summary 
In this paper we have taken a brief tour 
of the landscape of emergence and ex-
plored how it may be useful to systems 
engineering.  We hope that the ideas 
presented here will be useful to the sys-
tems engineering community. 
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