

Abbott Putting Complex Systems to Work 1/34

Putting Complex Systems to Work

Russ Abbott

The Aerospace Corporation
and

California State University, Los Angeles

Russ.Abbott@GMail.com

Abstract. A primary objective of this
paper (as well as of this symposium) is
to examine concepts from the field of
complex systems that can be applied to
systems engineering. In this paper we
focus primarily on the notions of emer-
gence and entities and discuss their im-
plications for systems engineering.

1 Introduction
Complex Systems. The study of Com-
plex Systems (originally called Complex
Adaptive Systems) as a distinct and
recognizable discipline has been ongo-
ing for more than three decades. Most
trace its origins to John Holland’s work
on genetic algorithms (Holland, 1975) in
the 1970’s. Holland showed that a non-
directive random process, which resem-
bles biological evolution, is capable of
producing useful designs.

Some trace it back much farther—to
Henri Poincaré’s invention of chaos the-
ory, approximately a century ago, when
he demonstrated that it is mathemati-
cally impossible to find a closed form
solution to the Newtonian equations for
the trajectories of three or more interact-
ing gravitational bodies.1

1
 The following websites (among others) tell

the story.

http://cosmicvariance.com/2006/
07/23/n-bodies/,

Henri Poincaré2
Photograph from the frontispiece of the 1913

edition of ‘Last thoughts’ and therefore published
prior to 1923.

http://www.irit.fr/COSI/training/
complexity-tutorial/henri-poincare.htm,
and http://www.imcce.fr/Equipes/ASD/
preprints/prep.2004/
Poincare_Barcelone_2004_en.pdf.

2
 The images used in this paper are all

copyright free from Wikipedia Commons:
http://commons.wikimedia.org/.

Abbott Putting Complex Systems to Work 2/34

Systems Engineering. According to the
INCOSE website,3

Systems Engineering is an engineering
discipline whose responsibility is creating

and executing an interdisciplinary proc-

ess to ensure that the customer and
stakeholder's needs are satisfied in a

high quality, trustworthy, cost efficient
and schedule compliant manner

throughout a system's entire life cycle.

Although not explicit in this definition, a
significant aspect of systems engineer-
ing is the development of a design for
the system being engineered.

Our focus in this paper will be on the
relationship between emergence and
design. Emergence will lead us to con-
sider the issue of entities, what they are
and what it takes for them to persist. We
also examine the sorts of environments
that support emergence.

Section 2 discusses the notion of design
in complex systems and explores what it
means to say that a system is complex.

Section 3 extends the framework devel-
oped in section 2 to define emergence.
It also shows how emergence is inti-
mately related to systems engineering.

Section 4 discusses how emergence is
connected to our notion of entities. It
discusses the question of whether enti-
ties are objectively real. (We conclude
that they are.)

Section 5 discusses the relationship be-
tween thoughts and things—and in par-
ticular between thoughts, requirements,
designs, and things. It discusses com-
puter science’s success in developing
languages that help us externalize our

3
 http://www.incose.org/practice/

fellowsconsensus.aspx

thoughts. It attributes a significant part
of that success to the fact that the lan-
guages in which we express our
thoughts are also the languages we use
to control computers. This section also
discusses the notion of a level of ab-
straction, the technique used in software
to create emergence. Systems engi-
neering isn’t so fortunate.

Section 6 discusses multi-sided plat-
forms. A multi-sided platform is a level
of abstraction that provides a means,
mechanism, or set of conventions to
support the interaction of multiple ele-
ments.

Section 7 discusses dissipative sys-
tems, a kind of entity intermediate be-
tween static and dynamic entities, and
the kind of entities engineers tend to
build. A major difference between dissi-
pative systems and dynamic entities is
that dynamic entities are designed from
the core to be self-sustaining, with
whatever additional functionality they
have built on top of their ability to sus-
tain themselves.

Section 8 discusses service-oriented
designs. It argues that this is not a fad
but a fundamental design principle used
by nature.

Section 9 discusses feasibility ranges,
that all emergent properties have them,
and that it would serve us well to pay
more attention to them.

Section 10 discusses modeling and
simulation. Makes the point that we
aren’t nearly as good at it as we need to
be. It also makes the point that even if
were much better at it, we would still not
necessarily know how to use it to model
emergence.

Section 11 discusses innovative envi-
ronments. An innovative environment is

Abbott Putting Complex Systems to Work 3/34

one that may be thought of as emer-
gence-friendly. This section suggests
some properties that innovative envi-
ronments may be expected to have and
that seem likely to foster emergence.

2 Design in complex systems
Before discussing design in the con-
structive sense as used in systems en-
gineering, we examine what we mean
by design in general.

A primary goal of science is to compress
phenomenological descriptions into
concise abstractions. One wants to for-
mulate a statement about nature that
(a) captures a wide range of phenom-
ena but (b) is more abstract and concise
than a simple enumeration of the phe-
nomena described. If successful, one
will have achieved a reduction in the al-
gorithmic complexity4 of one’s descrip-
tion of nature.

Chaitin, one of the developers of the
theory of algorithmic complexity, credits
Leibniz with being one of the first to for-
mulate the goals of science in this way.
(Chaitin, 2003)

What is a law of nature?

According to Leibniz, a theory must be

simpler than the data it explains!

Because if a physical law can be as com-

plicated as the experimental data that it
explains, then there is always a law, and

4
 The algorithmic complexity of some in-

formation is the smallest computer pro-
gram required to reproduce that informa-
tion. A random sequence, a sequence
with no internal structure, has maximal al-
gorithmic complexity because it is impos-
sible to find a computer program that will
reproduce the sequence that is shorter
than the sequence itself.

the notion of “law” becomes meaning-
less!

Understanding is compression! A theory as

complicated as the data it explains is NO
theory!

All of this is stated very clearly (in French)

in 1686 by the mathematical genius and
philosopher Leibniz!

Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz (Artist: Bernhard Chris-
toph Francke, Braunschweig, Herzog-Anton-

Ulrich-Museum, ca 1700)

2.1 Upward predictability
When applied to a relatively well-
bounded region of interest (here for
convenience called a system) one is
looking for what we would now call the
design of the system.

Science often proceeds by examining a
system’s components and their interre-
lationships in the hope that in doing so
one will be able to formulate a simpler
description of the system as a whole.

Newton’s law of gravity is a good exam-
ple. It offers a description of how two

Abbott Putting Complex Systems to Work 4/34

bodies will move with respect to each
other—a description which is much sim-
pler than an enumeration of the relative
positions of the bodies in time. Further-
more, given Newton’s law of gravity, it is
possible to construct closed form equa-
tions that characterizes the position of
the two bodies when under the influence
of mutual gravitational attraction.

This is what one wants: an analysis of
the interactions at the component level
that yields a simple explanation of the
apparent complexity of phenomena ob-
served at the system level. Systems that
yield to this paradigm are what might be
called upwardly predictable.

2.2 Complex systems aren’t
upwardly predictable

A distinguishing feature of systems that
are considered complex is that they tend
not to be upward predictable: there is no
(known) way to reduce the complexity of
a description of the system as a whole
by formulating it in terms of descriptions
of the system’s components. In other
words, the properties and behaviors of a
complex system are not describable as
a simple, closed-form, mathematical
function of the properties and behaviors
of the system’s components. Typically
the best one can do is to propagate the
descriptions of the component interac-
tions and see what happens at the sys-
tem level.5

An example of such a class of systems
are n-body gravitational systems for
n > 2. As indicated above, Poincaré
showed that Newton’s laws cannot be
used to provide a reduced description of
the trajectories of more than two gravita-

5
 This approach is now known as agent

based modeling.

tional bodies. There is no simple way to
combine descriptions of the system’s
components to produce a description of
the system as a whole that is simpler
than propagating the descriptions of the
components.6

Systems deemed to be complex in this
sense are not claimed to violate tradi-
tional notions of scientific causation: no
additional forces are presumed to con-
tribute to the complex functioning of the
system as a whole. The only claim is
that there is no compact mathematical
equation that will characterize the be-
havior of the system as a whole as a
function of its components.

3 Emergence

3.1 Emergence and Com-
plexity

Sometimes higher level systems have
properties that seem to be both complex
and not complex in the sense just de-
scribed. Such systems have properties
that may be characterized in relatively
simple terms—much simpler than the
terms required to characterize the ele-
ments of which they are composed.
Even so, those systems still cannot be
usefully understood in terms of a func-
tion from their components to their
higher level properties.

An example is a computer program that
computes a mathematical function. The
mathematical function itself is a straight-
forward characterization of the input-
output behavior of such a program.
Such a description is far simpler than

6
 Another example is quantum mechanics.

There is no simple way to evaluate the
Schrödinger equation for systems of more
than a very few particles. In other words,
nature is complex.

Abbott Putting Complex Systems to Work 5/34

the description of the behavior of the
computer on which that program is run-
ning. If one were to describe the se-
quence of states (at virtually any level of
abstraction from quantum mechanics to
gates to machine language) through
which the computer passes as the pro-
gram runs, that description would be far
more complex than the description of
the function itself. Furthermore, there is
no general way to map the states of the
computer (or the computer program that
generates them) to the mathematical
function the software is computing.7

Typically the best one could do would
be to trace through the step-by-step op-
eration of the computer and see what
happens. So even though our software-
plus-computer system is simple to de-
scribe at the system level, it is also
complex in the sense described earlier.8

So here we have an apparent paradox.
We have both (a) complexity: there is no
natural complexity-reducing transforma-
tion of the descriptions at the lower level

7
 In general it is not decidable what function

an arbitrary computer program computes.
In using this example, we are not identify-
ing complexity with undecidability. But we
are categorizing the undecidable as com-
plex.

8
 Because of this seeming inversion of con-

trol—a simpler higher level appears to
spring from a more complex lower level—
there has been a temptation to look for an
explanation in terms of “downward causa-
tion”—the simpler higher level causes the
phenomena observed at the lower level.

Of course there is no downward causa-
tion. But because we are so used to think-
ing in terms of simple abstractions giving
rise to complex phenomena it’s easy to
understand why downward causation may
seem like an attractive possibility.

into descriptions at the higher level and
(b) simplification: the higher level may
be described in simpler terms than
those needed to describe the lower.

We have come to use the term emer-
gence to describe situations such as
these. In his PhD dissertation Shalizi
captures the algorithmic complexity
sense of emergence as follows.

One set of variables, A, emerges from an-
other, B if (1) A is a function of B, i.e., at
a higher level of abstraction, and (2) the
higher-level variables can be predicted

more efficiently than the lower-level ones,

where "efficiency of prediction" is defined

using information theory.9

3.2 Emergent properties are
autonomous

Although Shalizi’s definition gets at the
algorithmic complexity issues, it misses
an important point about emergence.
The relationships between the lower and
higher level variables are typically much
less important than the emergent prop-
erty itself. In fact, the higher-lower rela-
tionships are typically a matter of con-
venience rather than necessity.

In our example of software that com-
putes a mathematical function one
doesn’t care what sequence of states
the computer traverses. All one cares
about is that the function be computed
correctly. There may be any number of
ways to compute the function. Each may
traverse a different sequence of com-
puter states but yield the same eventual
output. It doesn’t matter which one is

9
 The extract is from his website:

http://www.cscs.umich.edu/
~crshalizi/notebooks/emergent-
properties.html.

Abbott Putting Complex Systems to Work 6/34

used as long as the final result is cor-
rect.

To capture this aspect of the issue, I de-
fined (Abbott, 2006b) emergence as the
situation in which one can describe
properties of a system in terms that are
independent of its components. From
this perspective, the property of interest
(in this example the computation of a
mathematical function) may be imple-
mented by lower level components (the
program must run on some computer
after all), but it is defined independently
of those components.10

Standard examples of emergence in-
clude the hardness of diamonds (static
emergence) and the tendency of some
species of birds to move in flocks (dy-
namic emergence). In both cases, the
higher-level properties are not only de-
fined ab initio at the higher level, they
are often meaningless when thought of
as properties of the system compo-
nents.

A diamond is hard because of how its
component carbon atoms fit together.11

10

 As developed in (Abbott 2006) this leads
to the notion of downward entailment, a
phenomena similar to but scientifically
more acceptable than downward causa-
tion. The specific example developed in
the paper shows that because one can
simulate a Turing Machine using the
Game of Life, the Game of Life is unde-
cidable. The undecidability of Turing Ma-
chines downwardly entails the undecida-
bility of the Game of Life.

11
 A diamond provides a nice example of
downward entailment. Because the car-
bon atoms of a diamond implement a rigid
lattice, the position and orientation of the
diamond as a whole downwardly entail
the positions of its components.

But the notion of a collection of carbon
atoms fitting together in this way is ex-
pressible only at the level of the dia-
mond itself.

Similarly, our notion of a flock is not just
a collection of birds; it is a collection of
birds that satisfies our intuitive sense of
what it means to be a flock.12 The notion
of a flock is no more accessible in the
language in which one describes indi-
vidual birds in isolation than the notion
of a diamond is accessible in the lan-
guage in which one describes individual
carbon atoms in isolation.

3.3 Emergence and require-
ments

The examples discussed above are
what might be considered naturally oc-
curring emergence, Systems engineers
are familiar with emergence as the re-
quirements that a system must satisfy.
Consider what we would now consider a
simple system such as an automobile. A
primary requirement is that it can be
driven from here to there. That property
is emergent. It is not meaningfully ap-
plied to any of the components of the
automobile. Nor is it expressible as a
closed form mathematical function of the
automobile’s components.

 This is a good illustration of the signifi-
cance of multi-scalar phenomena. At one
level, the diamond as a whole moves
through space. At another the diamond as
a rigid lattice structure is maintained. We
have two almost independent collections
of phenomena that operate on different
scales but that are sufficiently intertwined
to produce the effect of downward entail-
ment.

12
 The American Heritage

®
 Dictionary (2006)

defines flock as, “A group of animals that
live, travel, or feed together.”

Abbott Putting Complex Systems to Work 7/34

Thus systems engineering (in fact, engi-
neering in general) may usefully be un-
derstood as the design and develop-
ment of systems that have desired
emergent properties. As Rechtin put it,

A system is a construct or collection of dif-

ferent elements that together produce re-
sults not obtainable by the elements

alone.13

Virtually any engineered product illus-
trates emergence in this sense. Con-
sider the fact that computers perform
binary arithmetic. Binary arithmetic (or
any other kind of arithmetic) has no rele-
vance as a property of any of the com-
ponents that we use to build computers.
There is no sense in which one can say
that properties significant to arithmetic
apply in any normal sense to electrons.
Nor does it make sense to compare bi-
nary arithmetic in any information theo-
retic sense at the electron level to its
implementation at the computer instruc-
tion level. Binary arithmetic is defined
autonomously at the computer level and
is not applicable to the components of
which the computer is constructed.

Emergence in engineering is standard
practice. We tend to be surprised by it
when we see it occurring in nature with-
out our help. But it does. One way to
think about it is that nature really is a
blind watchmaker/engineer—and not
only when engineering biological sys-
tems.

4 Emergence and entities
In all of the preceding examples, emer-
gent properties were defined in terms of

13 From the INCOSE website:
http://www.incose.org/practice/
fellowsconsensus.aspx.

a higher level entity—often using lan-
guage that is not even applicable to the
components of the entity. If one thinks
about it, this is quite strange. What are
these higher level entities we are talking
about? On what ontological grounds do
we permit ourselves to speak about
them? Perhaps more to the point, are
such higher level entities objectively real
in any way that we can make sense of?
Is a diamond or a flock or an automobile
(or any other system) a real entity? Or is
it simply a collection of its components?

In (Abbott, 2007) we conclude that enti-
ties are objectively and recognizably
real in that (a) they have either more or
less (but not the same) mass as the
combined mass of their components
considered separately, and (b) they bind
their components together in a form that
reduces entropy.

It is only because of the entropy reduc-
tion contributed by entities that it is pos-
sible for Shalizi’s definition of emer-
gence to be realized. How is it possible
after all for the algorithmic complexity of
a system’s description to be reduced? A
description of a system is a description
of a system. If one description is simpler
than another, it is only because the sim-
pler description takes advantage of
some entropy-reducing structure that
the more complex description ignores.

So if a description of a system ex-
pressed in terms of “higher level” con-
structs is simpler than a description ex-
pressed in terms of “lower level” con-
structs, that means that the “higher
level” constructs have built into them
some structure that the lower level con-
structs lack. But that raises the question
of how the “higher level” constructs em-
body and maintain that structure.

Abbott Putting Complex Systems to Work 8/34

That’s what an entity is, a means to em-
body and preserve structure.

4.1 Kinds of entities
There are two kinds of entities: static
and dynamic.14 Static entities (for exam-
ple, atoms, molecules, and solar sys-
tems) maintain structure because they
exist in energy wells—and hence have
less mass as an aggregate than their
components.15

Dynamic entities (for example, living or-
ganisms, social and political organiza-
tions, and, strikingly, hurricanes16) main-
tain structure by using energy they im-
port from outside themselves. Because
of the flow of imported energy, they
have more mass as an aggregate than

14

 Below we will introduce an intermediate
third kind, the kind that engineers gener-
ally build.

15
 Paul Humphreys (1997) suggested a simi-
lar notion, which he called fusion. The fol-
lowing is Timothy O’Connor’s summary
(2006) of Humphreys’ position.

“[Emergent properties] result from an
essential interaction [i.e. fusion] be-
tween their constituent properties, an in-
teraction that is nomologically necessary
for the existence of the emergent prop-
erty.” Fused entities lose certain of their
causal powers and cease to exist as
separate entities, and the emergents
generated by fusion are characterized
by novel causal powers. Humphreys
emphasizes that fusion is a “real physi-
cal operation, not a mathematical or
logical operation on predicative repre-
sentations of properties.”

16
 See (Abbott, 2007). We discuss hurri-
canes as entities below.

the combined mass of their compo-
nents.17

Entities have emergent properties that
are defined at the level of the entity it-
self. That a government is democratic or
that a diamond is hard are properties
defined at the level of the government or
the diamond. They are not properties of
the components of a government or a
diamond.

4.2 The wonder of entities
One must wonder whether this isn’t
slight of hand. How can one speak of an
entity and discuss its properties inde-
pendently of its components?

Do entities spring into existence fully
formed? How is that possible? Because
this seems so mysterious, one may be
tempted to speak of mechanisms for
self-organization. We see this as a dis-
traction.

There is nothing mysterious about how
entities form. Static entities form as a
result of well understood physical laws:
atoms are created from elementary par-
ticles; molecules form from atoms; etc.
Dynamic entities also form as a result of
natural processes. Governments form
when people create them—either explic-
itly or implicitly. Hurricanes form when
the atmospheric conditions are right.
Self-organization is not the point.18

17

 Speaking poetically one might refer to the
energy flowing through a dynamic entity
as its soul or spirit. When the energy
stops flowing, the entity dies. From this
perspective a soul or spirit has mass.

18
 It is still an open question how one might
form a biological cell “from scratch.” There
is no known mechanism for producing a
cell other than through cell division, i.e.,

Abbott Putting Complex Systems to Work 9/34

The marvel of entities is not in some
seemingly magical process of self-
organization; the marvel is that entities
exist at all and that they have properties
and behaviors that in some sense may
be described autonomously.

The fact that entities seem to spring into
existence in some sense fully formed
and that they have properties that seem
to be defined self-referentially is the ba-
sis of the argument from Intelligent De-
sign. How can something that is alto-
gether new and that has new proper-
ties—properties like the ability to fly that
seem to be defined in terms of the entity
itself—appear apparently from no-
where?

One answer—not related to Intelligent
Design—is that the “new properties” we
attribute to entities are really nothing
more than ideas in our minds. Proper-
ties as such don’t exist in nature. Enti-
ties are what they are no matter what
properties we attribute to them.

This is not say that an entity’s “new
properties” are fictitious. Hemoglobin
can transport oxygen. But the property
of being able to transport oxygen, while
true of hemoglobin, is not a label one
finds attached to hemoglobin molecules.
The conceptualization of the ability of
hemoglobin to transport oxygen as a
property of hemoglobin is an idea in our
minds.19

A second answer—also not related to
Intelligent Design—is simply to look

from an existing cell. How did the first cell
form? We don’t yet know.

19
 We discuss below why it is important for
systems engineering to distinguish be-
tween ideas in our minds and properties
of entities.

around and see that it happens. The fact
that entities come into existence means
that nature provides some way for this
to happen. It is our job as curious crea-
tures to understand it, not to deny its
possibility.

In attempting to understand how entities
form we encounter the real mystery—a
mystery deeper than we can explore in
this paper. What are the primitive enti-
ties—if, indeed there are primitive enti-
ties—and how do they interact? In quan-
tum mechanics the primitive elements
act as both particles and fields. As fields
they interact because they inhabit a
common environment of an assumed
three-dimensional space—although that
doesn’t seem to be the complete an-
swer. What is the mechanism, for ex-
ample, whereby fermions, e.g., elec-
trons, obey the Pauli exclusion princi-
ple? What mechanism prevents two
fermions (but not two bosons) from oc-
cupying the same state?

Of course if there were an answer to the
“what mechanism” question, then the
elements whose behavior is being ex-
plained would not be primitive. The al-
ternative is to say that there is no
mechanism and that the Pauli exclusion
principle is simply a fact of life. But that
seems too arbitrary. Of course any set
of primitive elements must be accepted
axiomatically. But why these axioms?

Smolin (2006) argues that to find a bet-
ter answer to these questions we need a
background-free theory of fundamental
physics. Such a theory would at least
provide an explanation in terms of itself
and may seem somewhat less arbitrary.

Abbott Putting Complex Systems to Work 10/34

5 Externalizing our thoughts

5.1 Emergence and systems
engineering

As indicated above, emergence is cen-
tral to systems engineering. Virtually
every important property of an engi-
neered system is emergent. Although
we tend to think of human-produced and
naturally occurring artifacts as different,
emergent properties that result from an
engineering effort differ from those that
occur in nature only in that they are pro-
duced intentionally.

Yet there tends to be a significant differ-
ence between these two kinds of sys-
tems. Human-built systems are often
functionally fragile; their emergent prop-
erties don’t hold up as robustly as we
would like. Naturally occurring systems
tend to be more robust, flexible, and
adaptable. Why is that?

One reason is that human engineered
systems are typically built using a top-
down design methodology.20 We tend to
think of our system designs hierarchi-
cally. At each level and for each compo-
nent we conceptualize our designs in
terms of the functionality we would like
that component to provide. Then we
build something that achieves that result
by hooking up subcomponents with the
needed properties. Then we do the
same thing for the subcomponents. Etc.

This is quite different from how nature
designs systems. When nature builds a
system, existing components (or some-

20

 Software developers gave up top-down
design a quarter century ago. In its place
we substituted object-oriented design—
the software equivalent of entity-based
design. Below we suggest that it’s time for
systems engineering to do likewise.

what random variants of existing com-
ponents) are put together with no per-
formance or functionality goal in mind.
(Nature doesn’t have a mind.) The re-
sulting system either survives in its envi-
ronment or it fails to survive.

This approach doesn’t necessarily make
nature a brilliant designer. Some of na-
ture’s designs are wonderful, and some
suck.21 But significantly nature never
has to satisfy a requirement.22 Systems
engineers don’t have that luxury. But is
there anything we can learn from how
nature develops designs that we can
apply in our work?

5.2 Thoughts and things
A useful way to think about the differ-
ence between systems designed to sat-
isfy requirements and naturally occur-
ring systems is that requirements-based
systems typically result from an attempt
to externalize our thoughts. We think, “I
want a system that does this, this, and
that—i.e., with these properties and be-
haviors.”

Dreams of this sort, no matter how
dressed up and legitimized in terms of
formal requirements are still nothing but
ideas in our minds. Use of the some-
what deprecatory term nothing but is
intentional. Ideas by their nature can
exist only in the mind of someone who is

21

 Silver (this conference) points to “the
panda’s thumb, the placement of the
windpipe in front of the esophagus (so
that food can go down the wrong tube),
traversal of the urethra through the pros-
tate gland (so that if the prostate becomes
inflamed and swells, it becomes difficult to
urinate)” as examples of bad natural de-
sign.

22
 Nor does nature have to work within
budget and schedule constraints.

Abbott Putting Complex Systems to Work 11/34

thinking them. That’s all an idea is and
can ever be, a subjective experience in
the mind of the idea’s thinker. (See Ab-
bott (2006a).)

Yet when our ideas involve systems, we
want more than just pretty mental pic-
tures. We want material embodiments of
our ideas. We want to have the ideas in
our heads converted into physical real-
ity. We want to externalize our ideas
and to make them materially concrete.23
And we often succeed—spectacularly.
Much of what we experience in our post-
modern 21st century lives is the result of
successfully externalized thought.

But let’s consider what it means to ex-
ternalize a thought. There is no external-
ize button on our foreheads which, when
pressed, causes our ideas to materialize
as physical reality. One cannot simply
imagine something and expect a mate-
rial embodiment of it to spring into exis-
tence. Furthermore, even when we do
build something that reflects our ideas, it
is impossible to create an external rep-
lica of a thought. Anything outside our
heads is different from something inside
our heads. Nothing outside our heads is
an idea. The best we can ever do in ex-
ternalizing a thought is to create some-
thing that we can understand as repre-
senting—or perhaps better yet embody-
ing—that thought.

5.3 Molding reality to re-
semble thoughts

Consider a word processing computer
program. We design word processors to
(appear to) operate in terms of charac-
ters, words, paragraphs, etc. Charac-
ters, words, and paragraphs are ideas.
Word processors operate (when de-

23

 This, of course, is the engineer’s credo.

scribed at one reasonable level of ab-
straction) in terms of character codes,
sequences of character codes bounded
by white space character codes, and
sequences of character codes bound
together as what the word processor
may internally refer to as a paragraph
data structure.

What we do when we attempt to exter-
nalize an idea is to mold elements of
physical reality into a form onto which
we can project the idea we want to ex-
ternalize. That’s all we can ever do. We
can never do more than mold existing
reality.

But even though we cannot incarnate
our ideas as material reality, we can
mold physical reality in such a way that
it has—or at least appears to have—
properties a lot like those of the ideas
we want to externalize. 24

Thus there is always a tension between
(a) building something out of real physi-
cal substance (even if that substance
involves bits) and (b) externalizing one’s
thoughts about what one wants.

This tension is easiest to describe with
respect to software—but it is true of
every constructive discipline, including
systems engineering. When one writes
software, one is writing instructions for
how a computer should perform. That’s
all that one can ever do: tell a computer
first to do this and then to do that. The
this and that which the software tells the
computer to do are the computer’s

24

 My wife, an English professor, objected to
my claim that word processors don’t work
with paragraphs. They do such a good job
of manipulating text in a way that corre-
sponds to her sense of what a paragraph
is, that she wants to credit them with
working with actual paragraphs.

Abbott Putting Complex Systems to Work 12/34

primitive instructions. But what we want
in the end is for the computer’s this-ing
and that-ing to produce a result that re-
sembles some idea in our heads.

Thus in software (as in any engineering
discipline) our creations always have
two faces: (a) a reality-molding face
whereby the software tells the computer
what to do and (b) a thought externaliz-
ing face which represents our ideas
about what we want the result of that
molding process to mean. The eternal
tension is to make these two faces
come together in one artifact.25

5.4 Thought externalization
in computer science

Because software can be about an ex-
traordinarily wide range of possible
thoughts, computer science has had to
face the reality-vs.-thought confrontation
more directly than any other human en-
deavor. And possibly because software
as text seems to be the only example of
an artifact that directly embodies both
aspects of this tension, computer sci-
ence has been relatively successful in
finding ways to come to grips with this
problem.

Computer science has developed lan-
guages in which we can both express
our thoughts and control the operation
of a computer. We invented so-called
higher level programming languages

25

 Often the two faces of our creations come
together as the concrete drives out the
conceptual. We now think of airplane as
meaning a physical airplane and not the
idea of a heavier-than-air transport ship.
Most likely we will soon think of paragraph
as meaning whatever MS word pro-
duces—although we will continue to dis-
tinguish between well-structured and ill-
structured paragraphs.

(Fortran being one of the earliest) in
which one could write something like
mathematical expressions which the
computer would evaluate. We invented
declarative languages (Prolog is a good
example) in which one could write
statements in something like predicate
calculus and have the computer find
values that make those statements true.
We combined Prolog and Fortran when
we invented constraint programming
(which has not been as widely appreci-
ated as it deserves) in which one can
write mathematical statements of con-
straints which the computer ensures are
met.

We invented relational databases in
which one can store information about
entity-like elements—along with their
attributes and their relationships to each
other. We invented languages that allow
one to query those databases more or
less on the level of that conceptualiza-
tion.

We invented object-oriented program-
ming languages—which led naturally to
agent-based and now service-oriented
environments—in which one writes pro-
grams that (seem to) consist of interact-
ing entities.

At the application level, virtually every
computer program—from a payroll pro-
gram to a word processor to an image
processing program—embodies an on-
tology of the world to which that applica-
tion applies.

To help us write application programs
we invented tools and frameworks that
define meta-ontologies within which one
can create a desired ontology.

We did all this by writing programs that
tell computers first to execute this in-
struction and then to execute that in-
struction. The gap between the underly-

Abbott Putting Complex Systems to Work 13/34

ing computer and the languages in
which we write programs is often enor-
mous. But that doesn’t mean that we
can forget about the computer. No mat-
ter what else it is, and no matter how
well our programs (seem to) express the
thoughts in our heads, a program is
nothing unless it tells a computer which
instructions to execute and in what or-
der. In the end, that’s all a computer
program is: a means to tell a computer
what to do.

5.5 Computer science uses
emergence to link ideas
to reality

Computer Science has been called ap-
plied philosophy:26 one can think about
virtually anything as long as one can
express those thoughts in a form that
can be used to control the operation of a
computer.

I like to think of the computer as a reifi-
cation machine: it turns symbolically ex-
pressed abstract thought into concrete
action in the physical world.27

As a reification machine, the computer’s
interface between thought and action is
the computer program. When we write
in a programming language we are ex-
pressing our thoughts in the program-
ming language—to the extent allowed
by the language. When a computer
reads what we have written, it takes our
writings as instructions about what op-
erations to perform.

26

 Fred Thompson, one of my early mentors,
is now Emeritus Professor of Applied Phi-
losophy and Computer Science at Cal
Tech.

27
 With virtual reality we complete the cycle:
generating real physical signals with the
intention of producing particular subjective
experiences.

We have developed programming lan-
guages that allow us to express some-
thing close enough our thoughts that the
resulting programs, when executed, can
be identified with those thoughts.

The primary technique computer scien-
tists use to build programming lan-
guages that allow us to externalize our
thoughts is emergence. Recall that we
defined emergence as a situation in
which a property can be described inde-
pendently of its implementation. That’s
exactly what a program specification is.
Whenever we specify the desired be-
havior of a computer program inde-
pendently of the means by which that
behavior is implemented, we are asking
for the creation of an emergent phe-
nomenon.

Emergence of this sort has a long his-
tory. Both axiomatic semantics (Hoare,
1969) and denotational semantics (Ten-
nent, 1976) offer approaches to provid-
ing declarative specifications for com-
puter programs—which by intent are
independent of the program’s implemen-
tation.

More generally, workers in the fields of
functional and logic programming have
created programming languages (e.g.,
Haskell28 and Prolog29) in which the pro-
grams one writes may be understood as
a declarative statement of one’s inten-
tions rather than as instructions to a
computer.30

28

 See http://www.haskell.org/.

29
 For example, http://www.swi-prolog.org/.

30
 However practitioners in both paradigms
find that most “real” programs written in
functional and logic programming lan-
guages generally cannot be understood in
a fully declarative way. Virtually all real
programs—no matter what the language

Abbott Putting Complex Systems to Work 14/34

The ACM’s series of conferences on
declarative programming31 explores the
even more general question of what one
can say about programs that is inde-
pendent of the steps the program in-
structs the computer to take.

The prototypical example of emergence
in software is the application program
interface or API. An API characterizes
what some software—generally the
elements of a program library—will do
when invoked in certain ways. A good
API does not describe how the software
will accomplish that result, just what the
result will be. This is standard good
practice about software design and
specification.

What is not often mentioned—perhaps
because we all take it so much for
granted by now—is that an API is gen-
erally explicated in terms of an ontology
that may have nothing to do with the
means by which the API is imple-
mented. As we indicated above, virtually
every computer application is intended
to implement a conceptual model, i.e.,
some externalized thought. The same is
true for the APIs exposed32 by a soft-
ware library, application, or system.

—must be understood operationally. This
is understandable. One can never escape
the fact that a computer program is nec-
essarily a means for instructing a com-
puter to act.

31
 The International Conferences on Princi-
ples and Practice of Declarative Pro-
gramming (PDPP). See the website,
http://pauillac.inria.fr/~fages/PPDP/.

32
 Current usage favors the term expose to
refer to API operations. The implication is
that an API is a window into a secret onto-
logical world (the conceptual model) to
which one has access only via the opera-
tions made available through the API.

The ontology or conceptual model in
terms of which a software system is de-
scribed is sometime referred to as a
level of abstraction. In other words a
software system creates an emergent
ontological domain that can be ac-
cessed and manipulated in ways speci-
fied by its API.

One of the primary threads in the history
of computer science is the development
of increasingly powerful ways to create
new levels of abstraction. By providing
ourselves with the means to create new
ontological domains—which can then be
used to build other ontological domains,
etc.—computer scientists have used the
power of emergence to create physical
models of an extraordinarily wide range
of thoughts.

Although these externalized thoughts
are far removed from low-level com-
puters operations, they are nonetheless
still grounded by real computers execut-
ing one real physical instruction after
another. In perhaps more familiar words,
software development is both a top-
down (thought externalization) and a
bottom-up (emergence) endeavor.33

5.6 Thought externalization
in systems engineering

Systems engineering is just beginning to
focus on this issue. Model-based devel-
opment, e.g., SysML, attempts to allow

33

 Of course the “real” “physical” instructions
that ground computer software are them-
selves emergent phenomena built on top
of still lower level phenomena. Computer
science owes its existence to the ability of
electrical engineers to create an emergent
digital world—of bits and instructions that
manipulate them—that we can use as a
platform on which to build our emergent
creations.

Abbott Putting Complex Systems to Work 15/34

systems engineers to think in a lan-
guage that both expresses our thoughts
and represents how we mold reality. But
systems engineering is at a significant
disadvantage. In computer science we
write in languages that control real com-
puters.34 There are no systems engi-
neering languages that generate real
physical systems.

When software developers write a com-
puter program, load it into a computer,
and press the Start button, the computer
becomes the program we have written.
There is nothing comparable for sys-
tems engineers. We don’t have a sys-
tems engineering language and a de-
vice into which descriptions written in
that language can be loaded that will
become the system the language is de-
scribing once one presses a Start but-
ton.

The closest systems engineering can
come to this dream is to write in a lan-
guage that represents a model of a
physical system. But models aren’t real-
ity. Programming languages succeed
because they are grounded in the reality
of an actual computer executing actual
instructions. Models, in contrast, are al-
ways divorced from reality. One can’t
ever model all aspects of a system. So
one chooses what one considers a sys-
tem’s most important aspects and mod-
els those. But that’s always dangerous.
See the discussion below about the dif-
ficulty of looking downwards.

34

 UML is an unfortunate step back from
computer science’s traditional loyalty to
executable languages.

5.7 Thought externalization
in science

Science may be understood as a similar
process of thought externalization. Sci-
ence may be understood as a search for
an explanation of how nature works.
What that amounts to is a search for an
explanation of a level of abstraction in
terms of implementation mechanisms
for the level of abstraction. In other
words, scientists observe phenomena,
which they describe in some terms that
seem to fit the phenomena. Then they
look for underlying mechanisms that ex-
plain why the phenomena seem to re-
flect or embody the observed abstrac-
tions. Much of early biology and chemis-
try, for example, fit this pattern quite
well. These disciplines organized and
catalogued biological and chemical enti-
ties into the well known biological tax-
onomies and the Mendeleev’s periodic
table of the chemical elements.

As in other forms of thought externaliza-
tion scientists develop ideas about how
to think about nature and then look for
ways to make those ideas concrete. In
this case those ideas are based on ob-
served phenomena. Then they look for
more concrete aspects of nature which
can be understood as having brought
about those phenomena. The more
concrete aspects of nature correspond
to what in computer science we have
referred to as known operations. The
phenomenologically inspired level of ab-
stractions correspond to ideas that one
wants to externalize.

It is also the case that as in other forms
of thought externalization, as one finds
concrete ways of expressing one’s
thoughts, the thoughts themselves be-
come better defined. As (Scerri, 2006)
points out in his review of the develop-
ment of the periodic table, chemists

Abbott Putting Complex Systems to Work 16/34

originally thought that atomic weight
characterized chemical elements. We
now know that it is the number of pro-
tons that characterize a chemical ele-
ment. In this way, the intuitive but infor-
mal idea of a chemical element that had
known properties that differed from
other chemical elements was refined
and made precise by understanding that
atoms are best grouped according to the
number of protons they contain.

The work of shaping existing concepts
as a way of formalizing and formulating
a thought appears to be an important
aspect of thought externalization. An
important part of thought externalization
is the act of grounding a thought in con-
crete terms, i.e., of expressing it in
terms that are—or at least appear to
be—grounded in references to known
reality.

The challenge of science is often to dis-
cover previously unknown reality, e.g.,
the proton, to ground thoughts that we
wish to externalize. Once grounded one
often finds that the original thoughts
were only approximations of what turn
out to be more robust ways of under-
standing nature.

6 Multi-sided platforms
As discussed above, a level of abstrac-
tion encapsulates and embodies a spe-
cialized ontology (i.e., a conceptual
model) of one sort or another. An ex-
traordinarily important kind of level-of-
abstraction is the multi-sided platform.
Hagui characterizes a multi-sided plat-
form (from the perspective of the plat-
form as a business35) as one in which
the platform provider must

35

 Interview with Andre Hagiu, Working
Knowledge, Harvard Business School,
March 13, 2006.

get two or more distinct groups of cus-

tomers who value each other's participa-
tion on board the … platform in order to

generate any economic value. … Exam-
ples are pervasive in today's economy

and range from dating clubs ([the two

sides are] men and women), financial
exchanges [such as a stock market],

real estate listings, online intermediaries
like eBay (buyers and sellers), ad-

supported media (ad sponsors and
readers/viewers), computer operating

systems (application developers and us-

ers), videogame consoles (game devel-
opers and geeks), shopping malls (re-

tailers and consumers), digital media
platforms (content providers and users),

and many others.

When considered more generally, i.e.,
not necessarily as an business, a multi-
sided platform is a level of abstraction
that provides a means, mechanism, or
set of conventions for structuring and
enabling interaction among parties—
especially parties that expect to benefit
from the interaction.

As Hagiu indicated, men and women in
a dating club are able to interact be-
cause they belong to the same club.
The same is true of merchants and
shoppers in a mall and buyers and sell-
ers on eBay.

In general, a multi-sided platform results
from the factoring out of an aspect of an
interaction. In the first three examples
above, what’s factored out is (a) the
process of finding the other party and
(b) the formalism of making contact. In
the sending-receiving interaction what’s
factored out is the actual sending and
receiving of mail and packages along

http://hbswk.hbs.edu/item/5237.html.
Hagiu is one of the authors of (Evans,
2006).

Abbott Putting Complex Systems to Work 17/34

with a formalized way of making use of
that service once it’s reified as a service
on its own.

By factoring out an aspect of an interac-
tion and providing it more efficiently, the
platform makes the interaction more ef-
ficient for the parties and at the same
time generally makes money for itself.

Multi-sided platforms are extraordinarily
pervasive. Any file extension (such as
.doc, .exe, .pdf, etc.) that is associated
with a file that is passed from developer
to user (the two sides) is associated with
a multi-sided platform. When people use
such a platform to work collaboratively,
both sides assume both roles.

The platform itself consists of the soft-
ware that takes the file as input and
“brings it to life”—allowing the user to
use it as the platform enables.

Many but not all programming lan-
guages define multi-sided platforms.
Java does because both the user and
the developer rely on Java to make use
of software developed in Java. C++ isn’t
because only the developer uses it.
Software developed in C++ is created to
run on the operating system itself as a
platform.

Browsers are multi-sided platforms.
Software plug-ins to browsers such as
Flash are platforms built on top of the
platform provided by browsers.

Google defines two multi-sided plat-
forms. The first is the platform that
brings together web sites and web surf-
ers; the second is the platform that
brings together web advertisers and
web surfers. Google created the second
platform—the one on which it makes it
money—by giving away the first plat-
form. The second platform consists of

the words people use in queries to the
first platform.

6.1 Multi-sided platforms
create new interaction
opportunities

As exemplified by Google, multi-sided
platforms often create interaction oppor-
tunities where they didn’t exist before.
Other good examples are online mailing
lists (such as YahooGroups) and bulletin
boards. It is common wisdom that mail-
ing lists and bulletin boards have cre-
ated communities—and hence interac-
tions among members of those commu-
nities—that never would have come into
existence otherwise. The same is true of
multi-person games such as World of
Warfare and Second Life, which are
primarily communities rather than com-
petitions. Systems such as MySpace
and FaceBook provide another sort of
community building platform. The inter-
actions that occur on these platforms
would almost certainly never had oc-
curred were it not for the existence of
these platforms.

6.2 Our multi-sided plat-
forms define our infra-
structure

Once a commercial platform becomes
established, conflicts may arise when
the interests of the platform owner differ
from those of the platform users. Pres-
sure may develop among platform users
to de-commercialize the platform and to
move its governance out of the com-
mercial realm and to bring it under the
control of the users.

Our regulated utilities—such as power
and telephone services—illustrate a
successful combination of user govern-
ance and private ownership. Other plat-
forms, e.g., our road and highway sys-
tem, are owned and operated directly by

Abbott Putting Complex Systems to Work 18/34

the government. We find these plat-
forms so essential that we want to en-
sure that the interest of the platform us-
ers take precedence over the interest of
the platform providers.

Platforms such as these, along with the
rest of our community-wide platforms
(such as our transportation, package
delivery, and mail systems36 and oth-
ers), define what we refer to generically
as a community’s infrastructure.

6.3 Standards and open
source platforms

Organizations that are able to establish
a multi-sided platform as a widely used
standard (explicit or de facto) are often
able to profit from it. Familiar examples
are Microsoft Windows and eBay. This
has led to the notion of what has been
referred to as a network effect, namely
that the value of a network increases
more than linearly with an increase in
the size of the network.37

The literature on network effects seems
not to identify platforms as the source of
the value: networks hogs the spotlight.
Nonetheless, it is the establishment and
ownership of platforms that has eco-
nomic value. Thus platforms become
very important to commercial organiza-
tions, who will fight to establish the

36

 The platform that facilitates the electronic
version of such interchanges is the collec-
tion of Internet email standards. See the
Internet Email Consortium website
(http://www.imc.org/mail-standards.html)
for a list of email standards. We discuss
below the importance of standards as
platforms.

37
 See (Briscoe, 2006) for an argument that
the rate of growth is typically n log(n)
rather than n

2
.

dominance of their platform in a certain
realm.

There are (at least) three countervailing
forces. The first, as we mentioned
above, is the regulation and in some
cases government control of platforms.

The second is the adoption of neutral
standards, i.e., standards that are nei-
ther controlled by nor tailored to the in-
terests of any particular vendor. When a
vendor-neutral standard is defined for a
platform, the platform functionality is de-
fined independently of any specific im-
plementation of that functionality. This is
of to the benefit of platform users be-
cause vendors must then compete to
provide better implementations of a plat-
form with a well-defined specification.

Thus the most ephemeral of multi-sided
platforms is the standard. Users of sys-
tems/components that adhere to a stan-
dard are able to interact with each other
only because they both conform to the
standard.

The third force that mitigates the com-
mercialization of a platform is open
source software. Many commercial sof-
tware products depend on platforms for
their operation. The most widespread
case is the dependence of software ap-
plication programs on operating sys-
tems. Consider the position of the de-
veloper of such a software product. He
is essentially at the mercy of the plat-
form owner. Should the platform owner
decide to enter the same market, that
owner has an enormous advantage. The
most widely known case is the way in
which Microsoft destroyed the Netscape
browser. No company wants to be that
vulnerable. The developer of a software
application will be motivated to support
alternative platforms for his product. The
most attractive alternative platform is

Abbott Putting Complex Systems to Work 19/34

one that is neither controlled by a com-
mercial entity not regulated by the gov-
ernment. Hence it is not at all surprising
that many commercial companies pro-
vide significant support to the develop-
ment of open source platforms.

In a draft article, Iansiti and Richards
(2007) analyse open source systems.
They find that one can group open
source software (OSS) into two catego-
ries: the "money driven cluster," which
receives 99% of corporate funding of
OSS and the "community driven clus-
ter," which receives very little corporate
funding.

The big four in the money driven cluster
are Linux, Firefox, OpenOffice, and
MySQL. All four are platforms that are
central to how computers are used. The
first three compete with platforms that
are owned and controlled by a single
for-profit company. No corporation
wants to see the platforms on which its
products depend subject to the profit
calculations of some other commercial
entity. It's no wonder that corporations
are willing to spend money to strengthen
publicly and openly controlled alterna-
tive platforms.

6.4 Platforms as environ-
ments

The preceding examples were all spe-
cialized platforms that support important
but limited kinds of interaction. The
more significant community-level multi-
sided platforms are those that structure
economic interaction itself. The two
most important are (a) the monetary and
banking system and (b) the laws of
commerce.

By factoring out the economic notion of
value, the monetary system is the multi-
sided platform that allows economic

value to be abstracted, stored, ex-
changed, and transformed.

Similarly, the laws of commerce (and its
associated judicial and police system) is
the multi-sided platform that enables
economic agreements to be made and
transactions to occur—both with an in-
creased level of confidence and secu-
rity. This latter multi-sided platform has
factored out what would otherwise be
the need on the part of the participants
to establish their own enforcement
mechanisms.

As a society we clearly believe that
these platforms should be controlled by
the government and not by commercial
organizations.

6.5 Natural language as a
platform

An even more pervasive platform is lan-
guage itself. Our natural languages pro-
vide us means to interact. Language as
a platform is different from most of the
other platforms we have discussed in
that it is implemented by each of us in-
dividually.

Natural language is like a standard in
that no one entity provides an imple-
mentation. It is like a standard in that we
have dictionaries and grammar books
and “standard English” reference im-
plantations. But clearly it is not a fixed
standard; nor is it a standard whose
precepts change only with the approval
of the standardization committee.

Natural language is also like open
source in that its evolution depends on a
large community of contributors. But it is
even less structured than open source,
most of which is controlled by a small
group of top-level developers.

As indicated above, the natural lan-
guage platform is implemented by each

Abbott Putting Complex Systems to Work 20/34

of us individually. We each spend the
first six years of our lives learning how
to do that. Even though we are certainly
not completely consistent about our pri-
vate implementations, it is really quite
amazing that we all do it as consistently
as we do and that it is as successful a
platform as it is.

6.6 Multi-sided platforms
and systems engineering

Like levels of abstraction in general,
multi-sided platforms should be central
to systems engineering. Unfortunately,
they tend not to be. In systems engi-
neering we tend to focus on pair-wise
communication among systems compo-
nents. Often that pair-wise communica-
tion is hierarchical; sometimes it is hori-
zontal. But in either case, we don’t think
about factoring out any of the functional-
ity built into that communication.

When working on interaction we often
write what are called interface control
documents (ICDs). But like the inter-
faces they specify, these documents are
defined on a pair-wise basis.

Recently, the notion of net-centric op-
eration has gained significant traction.
That notion is built on the idea of the
network as a platform. This, of course, is
a very powerful idea—one that was in-
spired by the Internet—and one that we
applaud. But the network as a platform
is just one example. In software plat-
forms abound. As we said above, most
file types correspond to platforms. It’s
time for systems engineering to begin to
conceptualize systems in terms of
(a) levels of abstraction in general and
(b) platforms in particular. We return to
this theme below when we discuss ser-
vice oriented architecture.

6.7 Multi-sided platforms as
dynamic entities

All multi-sided platforms are dynamic
entities. As such they must extract en-
ergy from their environment to persist.
Platforms such as Microsoft Windows,
eBay, and regulated monopolies extract
that energy by making a profit on their
operations. Platforms provided by the
government are supported by taxes and
usage fees. At the other end of the
spectrum the (much smaller amount of)
energy needed for the persistence of
standards making bodies is contributed
by the individuals and corporations who
see it as in their interest that the stan-
dard continue to exist as a non-
commercial enterprise.

6.8 Platforms as both enti-
ties and environments

As a level of abstraction, a platform is
an entity. However, as our discussion
makes clear, platforms are also envi-
ronments—or at least parts of environ-
ments. They are environments (or ele-
ments of an environment) for the parties
that interact by making use of the plat-
form.

In some cases, a platform is a complete
environment. The platform consisting of
the instruction and interrupt set of a
computer establishes the complete envi-
ronment for software that runs in that
computer—although the instructions and
interrupts provide access to the larger
world within which the computer itself
exists.

Similarly, the platform defined by a pro-
gramming language establishes a com-
plete environment for programs written
in that language—with the same caveat
as above.

More familiar complete environments
are the platforms established by

Abbott Putting Complex Systems to Work 21/34

(a) simulation and modeling environ-
ments and (b) online multi-player
games.38

Because a level of abstraction, and in
particular a platform, serves as both an
environment and an entity, the level of
abstraction (as a conceptual construct)
is the fundamental notion in complex
systems.

6.9 Platforms and science
Much of science can be understood as
an attempt to explain phenomena in
terms of previously established plat-
forms. The traditional hierarchy of the
sciences is a simplified version of that
perspective.

Earlier we referred to the search for
background-free models of fundamental
physics. Such a background free model
will almost certainly be formulated as an
entity that serves as its own plat-
form/environment. What such a self-
referential entity/platform will look like is
still uncertain. Many programming lan-
guages, for example Lisp,39 have been
defined in terms of themselves. It’s not
clear to what extent that sort of self-
definition can serve as a model for a
self-referential entity/platform.

38

 There are well-known “leakages” from
multi-player game environments. Partici-
pants trade virtual possessions for real
money. They also meet in person outside
the game environment.

39
 See John McCarthy’s website document-
ing the history of Lisp: http://www-
for-
mal.stanford.edu/jmc/history/lisp/lisp.html.

7 Dissipative systems and dy-
namic entities

Systems engineers tend to build special
kinds of entities which are intermediate
between static and dynamic entities.
Prigogene coined the term dissipative
system (see, for example, 1997) for a
static entity that exhibits regularities
when energy is pumped through it.40
Most of the widely cited examples of
dissipative systems consist of relatively
unstructured static entities that exhibit
somewhat surprising structures—e.g.,
Rayleigh-Benard convection patterns—
when they are forced to respond to en-
ergy inputs.

But virtually any static entity will exhibit
some response to an energy flow—
especially when that energy flow is both
sufficient to have some noticeable effect
on the entity and moderate enough not
to destroy it. Much of what engineers
build, e.g., automobiles and computers,
are static entities whose (necessarily
dissipative) responses to energy flows
are in some way useful to us.

7.1 Dissipative systems vs.
dynamic entities

A dissipative system is intermediate be-
tween a static entity and a dynamic en-
tity in that it consists of a static entity
skeleton (which is more or less stable
without an energy flow) through which
one pumps energy. Dynamic entities do
not have such stable static skeletons.
Dynamic entities depend on their own
ongoing processes to maintain their
structures.41 A living organism, a hurri-

40

 That’s my summary of what a dissipative
system (also known as a dissipative struc-
ture) amounts to.

41
 See (Abbott, 2007) for a more detailed
discussion.

Abbott Putting Complex Systems to Work 22/34

cane, or a government would not persist
even as a skeletal structure without a
continual flow of externally supplied en-
ergy.

By working primarily with dissipative
static entities engineers save them-
selves from having to build systems that
are continually rebuilding and repairing
themselves. But the price for that con-
venience is that the systems we build
are not self-persistent.

7.2 Self-persistent dynamic
entities

To date, we don’t know how to build
systems that persist on their own. To the
extent that we try it at all, our approach
tends to be backwards: design a dissi-
pative static entity and then add features
to it that might allow it to repair itself.
That isn’t how naturally occurring dy-
namic entities work. Most naturally oc-
curring dynamic entities are built to be
self-persistent—although not eternal—
from their core.

A hurricane
Original image from NASA

A hurricane, for example, maintains its
structure simply because of how it is or-
ganized. The same is true for a govern-
ment and a living cell.

Much of what goes on in a cell is cell
maintenance—which is not the same as
self-organization, which we said was a
distraction. Here’s how Frank Harold

(2001) describes this aspect of a cell’s
functioning.

Is the cell as a whole a self-assembling
structure? ... Would a mixture of cellular

molecules, gently warmed in some buffer,

reconstitute cells? Surely not, and it is
worthwhile to spell out why not. One rea-

son is [that] assembly is never fully
autonomous, but involves [pre-existing]

enzymes or regulatory molecules that link

[developing elements] to the larger whole.
But there are three more fundamental rea-

sons … First, some cellular components
are not fashioned by self-assembly, par-

ticularly the … cell wall which resembles a
woven fabric and must be enlarged by cut-

ting and splicing. Second, many membrane

proteins are oriented with respect to the
membrane and catalyze vectorial reac-

tions; this vector is not specified in the
primary amino acid sequence, but is sup-

plied by the cell. Third, certain processes

occur at particular times and places, most
notably the formation of a septum at the

time of division. Localization on the cellular
place is not in the genes but in the larger

system. Cells do assemble themselves, but
in quite another sense of the word: they

grow.42

Compared to a cell a hurricane is some-
what ethereal or insubstantial—strange
as that term may seem when applied to
hurricanes. Hurricanes have no material
skeletal framework that holds them to-
gether. Cells clearly do—although unlike
static entities a cell’s structural frame-
work requires fairly frequent mainte-
nance. Because a hurricane has no
skeletal framework it would appear not
to be a good candidate as a starting
point for additional functionality: there

42

 Recall our previous discussion of self-
referential entities. This passage illus-
trates how self-referential cells are.

Abbott Putting Complex Systems to Work 23/34

are no attachment points for adding any-
thing on.

Perhaps an even more significant differ-
ence between hurricanes and cells is
that a hurricane has no DNA. Contrary
to the popular image, DNA is not an in-
ternal representation of a cell’s (or any
biological organism’s) design. A more
appropriate way to think about DNA—
along with the protein-manufacturing
machinery that accompanies it—is as an
internal “factory” that converts raw mate-
rials into the physical stuff out of which a
cell’s (or more generally a biological or-
ganism’s) material framework is com-
posed.

As Harold points out, DNA does not in-
struct a biological organism how to use
the proteins that are generated; DNA is
not a master plan for the cell. DNA and
its associated mechanisms simply gen-
erate proteins—the disposition of which
is taken care of outside the DNA
mechanism.43 Since hurricanes have no
such skeleton they have no need for
mechanisms that keep that skeleton in
good repair.

It would seem that if we are to build self-
persistent systems, the first step is to
learn how to build minimal dynamic enti-
ties that have as their core (a) a means
for converting available raw materials
into the substances needed to create
and maintain their physical structures
and (b) mechanisms for using those
generated materials for self-persistence.

This is quite a trick. A cell manufactures
its own building blocks and then uses

43

 Of course DNA and its associated
mechanism are responsible for determin-
ing when particular proteins are gener-
ated—which also is a primary factor in de-
termining how the proteins are used.

those building blocks to keep itself in
good repair. A hurricane doesn’t manu-
facture anything, but it does use the raw
materials at hand (water vapor, rain
drops, air, etc.) to maintain its structure.
Since it doesn’t manufacture anything,
and since the materials at hand are
fairly insubstantial as building blocks, a
hurricane’s structural framework is itself
insubstantial.

After we learn how to build dynamic en-
tities that have the ability to convert
available materials into structural build-
ing blocks, then we can move on to add-
ing additional functionality. Two exam-
ples of additional functionality oxygen
transport and mobility. The DNA mecha-
nism is used to produce hemoglobin,
which is not a building block for cell
structures. But once a mechanism exists
for building proteins like hemoglobin and
once a mechanism exists for transport-
ing material throughout an organism,
oxygen transport becomes possible.
Similarly, cells have features that allow
them to move themselves about in their
environments—another bit of functional-
ity that was added on to a cell’s basic
structure.

The lesson is that once the mechanism
for producing building-block materials is
in place, it then makes sense to exploit
that mechanism to create new function-
ality.44 But until we learn how to build
basic self-provisioning dynamic entities

44

 In the section to follow we will see that the
technique of building new capabilities on
top of existing capabilities is one of na-
ture’s standard tricks—and one that we
would do well to emulate.

Abbott Putting Complex Systems to Work 24/34

we will be stuck with dissipative static
entities.45

7.3 Wikipedia as a case
study of a complex sys-
tem

Wikipedia—the social entity consisting
of the software and the people who
keep it going—is a very public example
of what may not at first seem like a tradi-
tional complex system. Yet it has all the
properties of a complex system. It is
multi-scalar. It includes (at a very broad
level) the MediaWiki platform on which it
runs, the Wikipedia conventions and
Templates that make give it some over-
all consistency, the users who contribute
content, and the users who make use of
that content.

Furthermore Wikipedia, like all dynamic
entities is both deployed and under de-
velopment simultaneously. Like a bio-
logical organism, Wikipedia exists and
functions in the world at the same time
that it is undergoing development and
self-repair. The MediaWiki software is
open source software that continually
being modified and extended. Similarly,
Wikipedia content is also continually be-
ing extended at the same time that it is
used by others.

Like most dynamic entities Wikipedia
also has very effective mechanisms for
self-repair. Editors and other users con-
tinually monitor pages for damage,
which they repair very quickly whenever
it occurs.

45

 Of course, like Theseus’ ship, most of the
large systems we build are embedded
within social dynamic entities that provide
for their maintenance—although we too
rarely conceptualize our systems that
broadly.

Wikipedia is also a nice example of a
multi-sided platform. The two most obvi-
ous sides are the readers and the con-
tent providers. (At the MediaWiki level,
the two other sides: the software devel-
opers and the web site as a software
product.) Often a single person interacts
with Wikipedia in different roles at differ-
ent times. As a multi-sided platform,
Wikipedia is also a system of systems.
It may also be seen as a system of sys-
tems from the perspective of the various
systems that keep it operational. These
include the source code maintenance
system, the mechanisms it uses to
“serve” itself as web pages, and the
Wikipedia Foundation, which plays a
major role in governance, operation, and
now fund-raising.

8 Service-oriented design
Much of what succeeds in nature con-
sists of processes that build on other
processes. Food web analysis illustrates
how species depend on other species.
Ecologies are built on seasonal cycles
and resources flows (energy from the
sun being the most basic but ocean and
river currents being other examples). A
species, a seasonal cycle, and a re-
source flow can all be understood as
emergent phenomena.46 In other words,
nature builds new emergent phenomena
on existing emergent phenomena.

When this happens in an ecological sys-
tem, we call it succession47—a territory
proceeds though a series of relatively
stable stages.48 At each relatively stable

46

 See (Abbott, 2006) and (Abbott, 2007).

47
 See, for example,
http://www.mansfield.ohio-state.edu/
~sabedon/campbl53.htm.

48
 This resembles what on an evolutionary
scale we refer to as punctuated equilib-

Abbott Putting Complex Systems to Work 25/34

stage, the species that populate that
stage depend on each other and on the
other aspects of the environment.

Progression occurs either because
something disturbs the status quo and
destroys some of the structures on
which some of the participants depend
or because there is an inefficiency in the
system that can be exploited by some
new mechanism.

This is pretty much the same picture
one sees in a market-based economy. A
collection of products, services, and
community-supplied infrastructures
(such as a monetary system, a postal
system, a judicial system, etc.) develops
into an ecology of mutual dependencies.
Such a system remains stable until ei-
ther a disturbance destroys something
on which part of the system depends or
a new way is found to use some of the
available energy.

Natural ecologies and market econo-
mies are both examples of what we call
innovative environments—which we dis-
cuss below. In this section we focus on
how such environments work and how
the principles underlying how they work
may be applied to system design.

The fundamental principle of innovative
environments is that new things are built
on top of existing things. Because we
have a well-developed transportation
system, for example, we can produce
products in one location and move them
to other locations to be consumed—or
otherwise used. One doesn’t have to
develop a transportation system from

rium. The difference is that in succession
outside species replace existing species
in a habitat. But the outside species are
not generally created as new species.

scratch in order to establish an off-shore
production facility.

This web-of-interrelationships perspec-
tive has implications for systems engi-
neering from two perspectives.

8.1 Products and services
evolve

Even though most marketed products
and services tend to originate as exter-
nalized thought, well-managed compa-
nies are always looking for new applica-
tions of their products—even applica-
tions that have little to do with the origi-
nally conceived market. In other words
products and services evolve to fit their
environments.49

Products and services that survive over
the long term are not stuck attempting
forever to implement the original vision
of what they were intended to be. A
product or service may have been born
of externalized thought, but the original
externalized thought is not considered a
constraint on the evolution of the prod-
uct or service. It’s the environment that
determines how a product or service will
evolve.

In order for a product or service to
evolve, its design must support change.
If a system is designed in such a way
that modification of that design is not
feasible, it will die. Thus any system that
is expected to survive over the long term
must have evolvability as a primary de-
sign consideration.

49

 We have all encountered the now familiar
version progression among software
products. Version 5.0 is frequently quite
different from version 1.0. It might even
serve a significantly different customer
base.

Abbott Putting Complex Systems to Work 26/34

Unfortunately, we tend not to build sys-
tems this way. Customers often want a
set of functional requirements satisfied
as inexpensively as possible. Normally
that entails sacrificing design flexibility
and evolvability for a rigid focus on spe-
cific functionality.50

Furthermore, for a product or service to
survive it must be robust. We don’t build
products for robustness except to the
extent that the requirements specify a
specific degree and form of robustness.
Of course one aspect of robustness is to
survive the unanticipated. So in some
sense requiring robustness is a self-
contradiction.

8.2 Products and services
are built on top of an es-
tablished base of other
products and services

The second and perhaps more signifi-
cant lesson to be learned from the web-
of-interrelationships perspective is that
when building something new it’s a good
idea (actually more than just a good
idea) to make use of existing products
and services. This is quite different from
how most of our systems work.

50

 This is one reason why it is a bad idea for
a customer ever to buy a major system. If
the system developer has a financial in-
terest in seeing the system flourish over
the long term, that developer will (pre-
sumably) design it to allow it to evolve. In
contrast, a customer, who has no idea
about these sorts of things, cannot define
evolvability as a requirement. (We don’t
know how to do that in any case.) Even if
the customer could require evolvability as
a product property, he or she would
probably not be in a position to exploit it.
After all it is the developer who is on the
lookout for new uses of the system, not
the individual customer.

As we said earlier, we tend to build sys-
tems hierarchically. We formulate a top-
level design that meets top level re-
quirements and then determine what
components we need to implement it.
We then decide how to build the com-
ponents in terms of sub-components,
etc. This approach doesn’t take advan-
tage of existing products and services
except when we use standard parts—
and we do that too rarely.

A hierarchical design approach has (at
least) two disadvantages. Firstly, it
tends to result in what have been called
stove-piped systems—systems that may
work successfully on their own but that
are very difficult to use in conjunction
with other systems. That such a conse-
quence will occur is quite understand-
able. When a system is built from the
top-down without regard to what else
exists, it is likely to be incompatible with
other systems.

Secondly, the internal design of such
systems tend to be rigid in the same
way. Just as a hierarchically designed
system isolates itself from other sys-
tems, the system components of a hier-
archically designed system isolate
themselves from other system compo-
nents. Hierarchical design results in
stove-piping both inside and out.

The alternative is to take advantage of
what exists and build on top of it. In
software there are now innumerable
tools, frameworks, components, and li-
braries (both open source and commer-
cial) that serve as the basis for further
development.51

51

 The term level of abstraction is some-
times used to characterize the use of an
abstract specification of a service as part
of a design.

Abbott Putting Complex Systems to Work 27/34

The prototypical example of building on
top of existing products and services is
a service-oriented architecture (SOA).52
Service oriented architecture is a nice
example because it illustrates how sys-
tems can be built on top of existing ele-
ments at both the system-to-system and
internal design levels.

Through an SOA, systems can provide
services for other systems.53 Similarly
system components can provide ser-
vices for other system components
through an SOA. In both cases, one is
building on two foundations: (a) the net-
work itself as a service (e.g., a level of
abstraction) that all elements that reside
on it use and (b) the design principle
whereby elements provides service for
each other.

It’s a positive development that service-
oriented and net-centric architectures
are becoming desirable attributes within
the systems engineering world.

It’s important to remember that SOA and
net-centricity are examples not princi-
ples. The principles are (a) build on top
of existing capabilities and (b) concep-
tualize whatever one builds as a service
that others will use, not as an end in it-
self.

52

 This is a design fad that has staying
power. It’s useful to think of our entire
economic system as a service oriented
architecture: every economic transaction
is essentially a service transaction. The
SOA nature of our economic system is
one of the reasons it is both strong and
agile.

53
 Hence SOA provides a natural framework
for exploring system-of-systems issues.

8.3 Dynamic entities need
energy to persist

The second principle captures one dif-
ference between most systems engi-
neered systems and systems that ap-
pear either in nature or in a market-
based economy.

The systems we are talking about are
almost all dynamic entities. They are not
just static objects, they generally do
something as a result of energy flows.
Even static objects, such as a bridge,
require maintenance. The real system is
not just the static bridge. The real sys-
tem is the bridge along with the mainte-
nance process that keeps the bridge in
good repair.54 When understood from
that broader perspective, it’s clear that
most of the systems that systems engi-
neers build are dynamic entities.

Dynamic entities persist only as long as
the energy that flows through them con-
tinues to flow. For a business, which is
also a dynamic entity, money is a proxy
for energy. A business exists only while
the money flowing into it is at least as
large as the money flowing out of it.

Unfortunately, it very rare that we ask
ourselves about the energy flows
needed for the persistence of the sys-
tems that we are asked to build. Long

54

 This perspective explains the Theseus’
ship paradox. Is a ship maintained in port
so long that all its parts have been re-
placed “the same ship” as the original?
The answer is that the ship maintenance
process is the same entity (even if it in-
volves numerous people cycling though
it—a property of entities). The physical
ship is just a component of that social en-
tity in much the same way as our (re-
placeable) bones are a component of
ourselves as entities.

Abbott Putting Complex Systems to Work 28/34

term energy flow considerations (i.e.,
funding) should be fundamental to any
system development project. But it gen-
erally isn’t. Because it isn’t we don’t
think about systems in terms of what it
would take to make them self-persistent.

This is not to say that every system
must be profitable in the traditional
sense of profitable. Many of our sys-
tem, e.g., our judicial and monetary sys-
tems are both so central to the function-
ing of our society and so ill suited to be
funded by their direct customers that we
properly treat them as a commons.
Commons too must be funded, but they
are funded in different ways from most
entities.55

But whether the system we are building
is expected to be a commons or self-
sustaining, we must understand from
the start how the energy flow required to
allow it to sustain itself will be provided.

In business the answer to this sort of
question would be recorded in a busi-
ness plan. In systems engineering we
don’t have a name for where we record
answers to these questions because we
rarely ask these questions.

9 Feasibility ranges
Emergence occurs within feasibility
ranges. A visible and tragic illustration of
this is the Challenger disaster in which
the O-rings lost their (emergent) sealant
property because the temperature was
too low.

Since there are always feasibility ranges
for emergent properties56 we should
make it standard practice to identify and

55

 Elinor Ostrom (1990) began the modern
era of understanding how successful
commons function.

56
 See (Abbott, 2006).

determine the feasibility ranges of each
emergent property we expect our sys-
tem and system components to display.
For each emergent property we should
explain why its feasibility range won’t be
violated—and what happens if it is. Had
this been done for the Challenger, we
would not have lost our astronauts.

For computer and software systems,
feasibility range concerns typically in-
volve such issues as data rates, access
rates (for quality of service issues), data
storage demands, assumed data (and
other input) ranges and limits, computa-
tional demands, accuracy assumptions,
and precision needs. In software these
are often lumped together as perform-
ance (as distinguished from functional-
ity) issues.

Although many of these issues are not
new, it is useful to see them as in-
stances as the more general category of
emergence feasibility ranges and to be
aware that feasibility range issues arise
throughout our systems.

Feasibility range issues are often or-
thogonal to other design considerations.
The term cross-cutting is typically ap-
plied to such situations. In software, as-
pect-oriented programming (and in
some cases creative application of con-
straint programming) may be used to
handle cross-cutting issues. I am not
aware of a standard approach for han-
dling cross cutting issues in systems
engineering.

10 Modeling and Simulation

10.1 For want of a nail …
An important characteristic of most
complex systems is that they are multi-
scalar. Every system that exhibits emer-
gence exists on at least two scales, the
scale at which the emergent property

Abbott Putting Complex Systems to Work 29/34

appears and the scale at which the
emergent property is implemented. Of-
ten there are many more scales. This is
especially true when emergence is built
upon emergence, as it often is. The
poem telling the story of how a missing
horseshoe nail led to the loss of a king-
dom illustrates the potential significance
of multiscale phenomena.

Much of the work in systems engineer-
ing relies on the results of simulations.
We build models of possible system de-
signs, and we run them, watching what
happens as we vary the parameters.

Even with our advanced modeling and
simulation capabilities, however, it
would be virtually impossible for us to
model all the nails in all the horseshoes
on all feet of all the horses ridden by all
the men in King Richard’s army. Cer-
tainly we can’t do anything remotely like
that if we were to model today’s mas-
sively larger systems.

Since we depend profoundly on simula-
tions, and since we are unable to simu-
late our intended systems at the many
scales at which we build them, and
since multi-scale phenomena pose a
potential threat to successful systems
engineering, what are we to do?

This is a major research issue and one
for which I have no answer. In (Abbott,
2006b) I called this the difficulty of look-
ing downward. The first step, though, is
to recognize that we have a serious
problem.

10.2 For want of imagination
…

Imagine (unrealistically) that we were
able to simulate our air transportation
system and everything else relevant to
how airplanes are used and maintained

in this country. Would that capability
have helped prevent 9/11?

My answer is “No.” The problem is that
we have no idea how to build simula-
tions that can identify emergent phe-
nomena—or even more difficult, how to
identify the possibility of emergent phe-
nomena.

Earlier we urged that new systems be
built on top of existing capabilities.
That’s exactly what the 9/11 terrorists
did. They used the capability provided
by the airlines of carrying and delivering
large amounts of explosive material to
virtually any location within the country.
All the terrorists had to do was to take
over the planes at the critical times—a
brilliant example of using an existing ca-
pability to produce a new capability.

We know how to write simulations in
which emergence occurs. Any agent-
based model is capable of fostering
emergence. But we don’t know how to
write simulations that will recognize that
emergence has occurred and issue a
report about it. In (Abbott, 2006b) I
called this the difficulty of looking up-
ward.

This is a nice illustration of the difficulty
of upwardly predicting emergence. Let’s
return to our fully accurate simulation of
our air transportation system. Suppose it
included (a) airplanes accidentally
crashing into buildings and (b) air hijack-
ings. Perhaps in such a virtual world, a
hijacked airplane accidentally crashed
into a building, destroying it. Even so, it
is difficult to imagine that the simulation
would be able to predict the intentional
hijacking of an airplane for the purpose
of crashing it into a building.

A system might be able to make such a
prediction if it were (a) programmed to
look for instances of significant destruc-

Abbott Putting Complex Systems to Work 30/34

tion (and categorize the accidental crash
as such an instance), (b) able to con-
clude that the accidental crash could
also be caused intentionally, and
(c) aware of the possibility of suicide ac-
tions.

The ability to make those observations,
draw those inferences, and predict a
9/11 type of attack goes far beyond
what one would normally find in an air
transportation simulation—and probably
far beyond any system so far yet devel-
oped.

11 Software that generates new
ideas?

In this section we explore what might be
required to build a system that could
generate the idea of attacking the World
Trade Center with hijacked airplanes.

I know of no system that is capable of
generating new ideas. For all the ad-
vances we have made in externalizing
particular modes of thought and concep-
tual models, we do not yet know how to
externalize the idea of an idea in any-
thing like its full richness.

In saying this we are assuming that
(a) ideas themselves exist only in the
minds of their thinkers, i.e., only as sub-
jective experience and that (b) com-
puters don’t have subjective experience.
An immediate consequence of this is
that computers don’t have ideas as we
understand them. So the best we can
possibly hope for with current technol-
ogy (and with any technology that we
can currently envision) is that we might
be able (a) to externalize the process of
generating new ideas and (b) to execute
that externalized process as software.

To do this we would have to find a way
(a) to represent the idea of an idea and
(b) to generate new ones artificially. To

use the example from the previous sec-
tion, we would have to develop a com-
puter systems that could come up with
an idea such as, “let’s use a commercial
airplane as a weapon to be wielded by a
suicide hijack crew.”

To accomplish this, four technologies
would have to be brought together:
knowledge representation, ontology
generation, modeling and simulation,
and exploratory search.

The question of how to represent ideas
in general has long been a subject of
study within computer science. Brach-
man (2004) provides a survey of the
current the state of the art of knowledge
representation. Most of the material in
that book is well known. It’s surprising
how disappointing and stale it seems.
As well as we have done in building
computer systems that externalize par-
ticular realms of thought, we have done
surprisingly poorly at externalizing think-
ing as such. There is nothing in Brach-
man (or anywhere else) that suggests
that we have any new ideas about how
to write a computer program that can
represent ideas in general.

If we think of knowledge representation
as a structure for representing ideas, we
need a way to populate such a knowl-
edge representation database. That’s
the subject matter of ontology. Ontology,
of course, is as old as philosophy. What
is needed here is an ontology that is
both rich enough to have the potential to
be the source of new ideas and flexible
enough to be able to incorporate new
ideas as they are generated. The two
most active projects in this area are the
various Semantic Web projects and

Abbott Putting Complex Systems to Work 31/34

Cyc57. These show promise, but none
seem mature enough to be put to work
in generating new ideas.

The third area is modeling and simula-
tion. Once one has an ontology cap-
tured by some knowledge representa-
tion formalism, to make real use of it,
one needs more than static informa-
tion.58 But executing a generic ontology
is far beyond our current state-of-the-art.

To take a simple example, we are not
currently able to simulate a multi-level
model of a diamond—a simple static
entity. On one level the simulation would
illustrate how the diamond is held to-
gether as a lattice by atomic forces. On
a second level the simulation would il-
lustrate how the diamond as a whole
moves through space. A third and even
more difficult combination of these lev-
els would show how a diamond can be
used to cut glass. Since a diamond is a
relatively simple static entity, imagine
how far we are from being able to build
adequate multi-level simulations that
involve dynamic entities. Imagine, for
example, building a simulation of an
evolutionary arms race in which insects
and plants compete with each other by
growing bark, evolving a bark boring ca-
pability, or evolving toxic compounds.

57

 See http://www.w3.org/2001/sw/ and
http://cyc.com/ respectively.

58
 Cyc contains lots of static information
about its subject matters. But it has no
way to execute operations that the ele-
ments of its database are able to perform.
Perhaps for that reason Cyc seems par-
ticularly weak in its catalog of verbs.

Finally, exploratory search, e.g., genetic
algorithms and genetic programming,59
is needed to allow our system to explore
various possibilities and come up with
ones that achieve its objectives.

Work in all four of these areas is ongo-
ing, but I am not aware of any current
projects that attempt to integrate these
area in a system that would be powerful
enough to generate an idea such as the
one that resulted in the destruction of
the World Trade Center. To do so would
achieve the original grand dream of arti-
ficial intelligence. We are still far from
that goal.

12 Innovative environments
We end this survey on a positive note.
As we have seen, emergence occurs in
a wide range of situations. Four envi-
ronments that are justifiably celebrated
for an outpouring of emergent phenom-
ena are the Internet (in particular the
World Wide Web), the U.S. (and now
the global) market-oriented economic
system, our system of scientific re-
search, and biological evolution.

Although quite diverse in their underly-
ing domains, all four have been extraor-
dinarily fruitful and have fostered an
ever-broadening flow of innovative
products, services, and other ele-
ments.60

59

 See, for example,
http://www.aaai.org/AITopics/html/genalg.
html.

60
 Transformation in the Defense Depart-
ment—including capability-based acquisi-
tion, net-centric operations, and service
oriented architectures—has been moti-
vated at least in part by a desire to pro-
duce similar benefits within the DoD.

Abbott Putting Complex Systems to Work 32/34

Although it is widely believed that envi-
ronments that enable and facilitate
emergence share some common char-
acteristics, we have no universally ac-
cepted list of exactly what those charac-
teristics are or why they matter. Which-
ever characteristics appear on a final
list—if there is a final, definitive list—the
following (or variants thereof) are likely
to be candidates.

1. Access to a supply of externally
provided energy and means for
exchanging it. All environment that
foster emergence are what is com-
monly known as far from equilibrium:
externally supplied energy continu-
ally flows through them. The overall
creative process can be summarized
as consisting of finding increasingly
innovative ways of using the avail-
able energy. To facilitate this proc-
ess, mechanisms must be available
to support the fungibility of energy
and its proxies such as money,
power, and attention.

2. Standards. New products, services,
and other items are almost always
created from existing products, ser-
vices, and other items. Composition
is greatly facilitated when the ele-
ments to be composed adhere to
widely accepted standards. Stan-
dards facilitate the composition of
products and services to produce
new products and services.

3. Communication and transporta-
tion infrastructures. Communica-
tion and transportation infrastruc-
tures facilitate the exchange/trans-
fer/flow of (a) information throughout
the environment and (b.1) energy (in
one direction) and (b.2) products
and services (in the other) among
trading partners.

4. A reasonable level of confidence
in the stability and continuity of
the products and services in-
stalled in the environment.
Mechanisms must be available to al-
low agreements to be made and for
installed products and services to be
relied upon.

5. Minimum overhead. Cultural or
other mechanisms must exist to dis-
courage corruption along with en-
forcement mechanisms to make it
harder to siphon off energy flows for
non-productive uses. More gener-
ally, the environment must incorpo-
rate mechanisms that minimize the
overhead of participating in the envi-
ronment.

6. Both (a) centralized but quasi-
democratic and transparent gov-
ernance of the overall system, its in-
frastructure, and the standards mak-
ing process and (b) decentralized
overall control (“power to the
edge”) in which as much autonomy
as possible is ceded to environment
participants.

7. Mechanisms that ensure that a
certain amount of the available
energy is devoted to the explora-
tion of the space of possible new
elements. There must be some
means to encourage the exploration
of new possibilities.

8. Mechanisms that allow new prod-
ucts and services to be developed
and installed in the environment
and then made known to other par-
ticipants in the environment.

9. A primarily bottom-up means for
allocating energy (or its proxies)
according to use: the more (less)
useful a product or service is found
to be (according to actual usage),

Abbott Putting Complex Systems to Work 33/34

the more (fewer) resources it will
have at its disposal. This implies a
market-like means for allocating
most of the resources available in
the environment. All of the partici-
pants in the environment must be
self-sustaining in terms of their
overall energy transactions. Since
the environment itself is predicated
on an external source of “free” en-
ergy, this should be possible.

10. An ability to form communities of
interest (formal, informal, voluntary,
and fee-based) to facilitate the shar-
ing of information, experience, and
expertise. The value of shared in-
formation is typically enhanced when
it is shared in groups.

11. Both (a) sufficient stability of the
overall environment that partici-
pants can establish regularized
modes of participation and
(b) (generally collaborative) means
to allow the environment to
evolve as conditions change. This
implies treating the environment as a
commons and finding a successful
way to govern it as such.61

Innovative environments are important
to systems engineering for at least three
reasons.

1. We want the systems we build (or at
least many of them) to be innovative
environments. Look at how the ex-
ample of the internet has inspired
transformation in the DoD. We want
the other systems we build to further
enable that vision and to provide ad-
ditional innovative environments for
our customers.

61

 Ostrom’s work on commons (1990 and
more recent work, not cited) is directly
relevant here.

2. We want our own processes to be
innovative. As we build systems, we
want to encourage innovation
among our analysts and develop-
ers.62

3. We want our own intellectual envi-
ronment to be innovative. Systems
engineering is constantly innovating;
it has never stood still. This sympo-
sium is an example of continued
vigor. We want to encourage innova-
tion in our systems engineering
community.

As we understand more about how to
make environments innovative, we will
become more and more successful in
achieving these goals.

13 Summary
In this paper we have taken a brief tour
of the landscape of emergence and ex-
plored how it may be useful to systems
engineering. We hope that the ideas
presented here will be useful to the sys-
tems engineering community.

References

Abbott, Russ, (2006a), “If a Tree Casts
a Shadow is it Telling the Time,” Interna-
tional Conference on Unconventional
Computation.

Abbott, Russ, (2006b) “Emergence Ex-
plained: Abstractions,” Complexity, 12/1
(September-October).

Abbott, Russ, (2007) “Emergence Ex-
plained: Entities,” in preparation.

Briscoe, Bob, Andrew Odlyzko, and
Benjamin Tilly, (2006) “Metcalfe's Law is
Wrong,” IEEE Spectrum, July 2006.
(Available online at:

62

 See Horowitz (this conference) for an ex-
ample.

Abbott Putting Complex Systems to Work 34/34

http://www.spectrum.ieee.org/jul06/4109
.)

Brachman, Ronald and Hector
Levesque (2004) Knowledge Represen-
tation and Reasoning, Morgan Kauf-
mann.

Chaitin, Gregory J. (2003) From Phi-
losophy to Program Size, Institute of
Cybernetics, Tallinn, Estonia.

Evans, David S., Andrei Hagiu, and
Richard Schmalensee (2006) Invisible
Engines: How Software Platforms Drive
Innovation and Transform Industries,
MIT Press.

Harold, Franklyn M. (2001) The Way of
the Cell: Molecules, Organisms, and the
Order of Life, Oxford University Press.

Hoare, C. A. R. (1969) "An axiomatic
basis for computer programming".
Communications of the ACM,
12(10):576–585, October 1969.
(Available online at:
http://www.spatial.maine.edu/~worboys/
processes/hoare%20axiomatic.pdf.)

Holland, John H., (1975), Adaptation in
Natural and Artificial Systems, Univer-
sity of Michigan Press, Ann Arbor.

Horowitz, Barry (2007) “Self-Evaluating
Agile Large-Scale Systems: SEALS,”
Symposium on Complex Systems Engi-
neering.

Humphreys, Paul (1997) “Emergence,
Not Supervenience”, Philosophy of Sci-
ence 64, pp. S337-S345.

Iansiti, Marco and Gregory, (2007), “The
Business of Free Software: Enterprise
Incentives, Investment, and Motivation
in the Open Source Community,” (draft)

[Available online at:
http://www.hbs.edu/research/pdf/07-
028.pdf.]

O'Connor, Timothy, Wong, Hong Yu
"Emergent Properties", The Stanford
Encyclopedia of Philosophy (Winter
2006 Edition), Edward N. Zalta (ed.),
forthcoming URL =
<http://plato.stanford.edu/archives/win20
06/entries/properties-emergent/>.

Ostrom, Elinor, (1990) Governing the
Commons: The Evolution of Institutions
for Collective Action, Cambridge Univer-
sity Press.

Prigogine, Ilya and Dilip Kondepudi,
Modern Thermodynamics: from Heat
Engines to Dissipative Structures, John
Wiley & Sons, N.Y., 1997.

Scerri, Eric (2006), The Periodic Table:
Its Story and Its Significance, Oxford
University Press.

Shalizi, Cosma R. (2001), Causal Archi-
tecture, Complexity, and Self-
Organization in Time Series and Cellular
Automata, Ph.D. dissertation, Physics
Department, University of Wisconsin-
Madison.

Silver, Pamela A., (2007) “Why we need
systems biology,” Symposium on Com-
plex Systems Engineering.

Smolin, Lee (2006) The Trouble with
Physics, Houghton Mifflin Company.

Tennent, R.D. (1976), “The Denotational
Semantics of Programming Languages,”
Communications of the ACM, 19(8):437-
453, August 1976. (Available online at
http://www.csc.liv.ac.uk/~grant/Teaching
/COMP317/densem.pdf.)

All trademarks, service marks, and trade names are the property of their respective owners.

