Cs 461 Winter 2010
Bapa Rao

Machine Learning Basic Concepts
Learning problem

- *Machine Learning* Improve performance in a task by learning from experience
- **Task T**
 - Optimize something
 - Solve a problem: checkers, predict stock price, generate buy / sell / hold decision
- **Performance measure P or target function**
 - Objective function to be optimized
 - Fitness function (may be same as objective function)
 - Win/loss ratio, come closest to actual price, maximize profit
- **Training Experience E**
 - Practice games against self, stock price history, buy / sell / hold history
- **Learning is an inductive process**
 - Specific to General
 - Learn rules from data, use rules to predict
 - “Data Mining”: Mine Data for Knowledge
Getting Practical

• Target Function
 – What is to be learned and what is the independent variable?
 • Move(Board)
 • BuyDecision(MarketState)

• Effectivity
 – Can the function be computed?
 – Move(Board) | WinInTheEnd
 • Have to know the answer to know the answers

• Representation
 – What are the relevant and useful detailed parameters of the independent variable?
 – What is their mathematical relationship?
 • Board: a*num_threatened + b*num_threatening
 • MarketState: a*Advances + b*Declines + c*EMA
 • 100011100, 110011100
 • Different combinations of parameters represented as strings

• Learning
 – Training Data
 – Test Data
 – Test “in the wild”

• Evaluation of learning
 – How close did we come to the optimal?
 • Mean squared error, ...
 • Sometimes this is implicit: Just pick the top winners for breeding (GA)
Example

Data:

\[
\begin{array}{cccc}
\text{Patient103} & \text{time}=1 & \rightarrow & \text{Patient103} & \text{time}=2 & \rightarrow & \text{Patient103} & \text{time}=n \\
\text{Age: 23} & \text{FirstPregnancy: no} & \text{Anemia: no} & \text{Diabetes: no} & \text{PreviousPrematureBirth: no} & \text{Ultrasound: ?} & \text{Elective C-Section: ?} & \text{Emergency C-Section: ?} \\
\text{Age: 23} & \text{FirstPregnancy: no} & \text{Anemia: no} & \text{Diabetes: yes} & \text{PreviousPrematureBirth: no} & \text{Ultrasound: abnormal} & \text{Elective C-Section: no} & \text{Emergency C-Section: ?} \\
\text{Age: 23} & \text{FirstPregnancy: no} & \text{Anemia: no} & \text{Diabetes: no} & \text{PreviousPrematureBirth: no} & \text{Ultrasound: ?} & \text{Elective C-Section: no} & \text{Emergency C-Section: Yes} \\
\end{array}
\]

Given:

- 9714 patient records, each describing a pregnancy and birth
- Each patient record contains 215 features

Learn to predict:

- Classes of future patients at high risk for Emergency Cesarean Section
Datamining Result

Data:

Patient103 \(\text{time}_1\) \rightarrow Patient103 \(\text{time}_2\) \rightarrow \ldots \rightarrow Patient103 \(\text{time}_n\)

<table>
<thead>
<tr>
<th>Age: 23</th>
<th>Age: 23</th>
<th>Age: 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstPregnancy: no</td>
<td>FirstPregnancy: no</td>
<td>FirstPregnancy: no</td>
</tr>
<tr>
<td>Anemia: no</td>
<td>Anemia: no</td>
<td>Anemia: no</td>
</tr>
<tr>
<td>Diabetes: no</td>
<td>Diabetes: YES</td>
<td>Diabetes: no</td>
</tr>
<tr>
<td>PreviousPrematureBirth: no</td>
<td>PreviousPrematureBirth: no</td>
<td>PreviousPrematureBirth: no</td>
</tr>
<tr>
<td>Ultrasound: ?</td>
<td>Ultrasound: abnormal</td>
<td>Ultrasound: ?</td>
</tr>
<tr>
<td>Elective C–Section: ?</td>
<td>Elective C–Section: no</td>
<td>Elective C–Section: no</td>
</tr>
</tbody>
</table>

One of 18 learned rules:

If No previous vaginal delivery, and Abnormal 2nd Trimester Ultrasound, and Malpresentation at admission

Then Probability of Emergency C–Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60
Issues

• What algorithms are there for learning target functions?
 – GAs, A host of classification and clustering algorithms, neural nets,
• Which algorithm to choose?
 – Which ones work well for what kinds of problems?
 – What is the role of the representation we choose?
• How to map the problem to the algorithm?
• How much training data?
• How do we choose the training step to improve results each time? (Evaluate the training results)
• What specific target function should the system learn?
• What representation is best?
 – Mapping the problem to the algorithm
 – Choice of attributes
• Computability and complexity
• Can these decisions be automated?
Concept Learning: Rules from Data

• Rules from a set of training examples
 – Could be positive, negative or both

• A Rule is a hypothesis that best fits the available data
 – Search the space of possible hypotheses
 – Test the hypothesis against the test data

• Hypotheses can be ordered from general to specific
 – Organizing principle for search
Training Examples for EnjoySport

<table>
<thead>
<tr>
<th>Sky</th>
<th>Temp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cold</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Change</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Cool</td>
<td>Change</td>
<td>Yes</td>
</tr>
</tbody>
</table>

What is the general concept?
Representing Hypotheses

Many possible representations

Here, h is conjunction of constraints on attributes

Each constraint can be

- a specific value (e.g., $Water = Warm$)
- don’t care (e.g., “$Water =?$”)
- no value allowed (e.g., “$Water=\emptyset$”)

For example,

```
<table>
<thead>
<tr>
<th>Sky</th>
<th>AirTemp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>?</td>
<td>?</td>
<td>Strong</td>
<td>?</td>
<td>Same</td>
</tr>
</tbody>
</table>
```
Prototypical Concept Learning Task

- **Given:**
 - Instances X: Possible days, each described by the attributes *Sky, AirTemp, Humidity, Wind, Water, Forecast*
 - Target function c: $EnjoySport : X \rightarrow \{0, 1\}$
 - Hypotheses H: Conjunctions of literals. E.g.
 $$\langle ?, Cold, High, ?, ?, ?, ? \rangle.$$
 - Training examples D: Positive and negative examples of the target function
 $$\langle x_1, c(x_1) \rangle, \ldots, \langle x_m, c(x_m) \rangle$$

- **Determine:** A hypothesis h in H such that $h(x) = c(x)$ for all x in D.
The inductive learning hypothesis: Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.
Instance, Hypotheses, and More-General-Than

Instances X

Hypotheses H

$x_1 = \langle\text{Sunny, Warm, High, Strong, Cool, Same}\rangle$
$x_2 = \langle\text{Sunny, Warm, High, Light, Warm, Same}\rangle$

$h_1 = \langle\text{Sunny, ?, ?, Strong, ?, ?}\rangle$
$h_2 = \langle\text{Sunny, ?, ?, ?, ?, ?}\rangle$
$h_3 = \langle\text{Sunny, ?, ?, ?, Cool, ?}\rangle$
Find-S Algorithm

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x
 - For each attribute constraint a_i in h
 If the constraint a_i in h is satisfied by x
 Then do nothing
 Else replace a_i in h by the next more general constraint that is satisfied by x
3. Output hypothesis h
Hypothesis Space Search by Find-S

Instances X

Hypotheses H

\[x_1 = \langle \text{Sunny Normal Strong Warm Same} \rangle, + \]
\[x_2 = \langle \text{Sunny Warm High Strong Warm Same} \rangle, + \]
\[x_3 = \langle \text{Rainy Cold High Strong Warm Change} \rangle, - \]
\[x_4 = \langle \text{Sunny Warm High Strong Cool Change} \rangle, + \]

\[h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle \]
\[h_1 = \langle \text{Sunny Warm Normal Strong Warm Same} \rangle \]
\[h_2 = \langle \text{Sunny Warm High Strong Warm Same} \rangle \]
\[h_3 = \langle \text{Sunny Warm ? Strong Warm Same} \rangle \]
\[h_4 = \langle \text{Sunny Warm ? Strong ? ?} \rangle \]
Complaints about Find-S

- Can’t tell whether it has learned concept
- Can’t tell when training data inconsistent
- Picks a maximally specific h (why?)
- Depending on H, there might be several!
Version Spaces

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if $h(x) = c(x)$ for each training example $\langle x, c(x) \rangle$ in D.

$$\text{Consistent}(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \, h(x) = c(x)$$

The **version space**, $V S_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$V S_{H,D} \equiv \{h \in H | \text{Consistent}(h, D)\}$$
The List-Then-Eliminate Algorithm:

1. $\textit{VersionSpace} \leftarrow$ a list containing every hypothesis in H

2. For each training example, $\langle x, c(x) \rangle$
 remove from $\textit{VersionSpace}$ any hypothesis h for which $h(x) \neq c(x)$

3. Output the list of hypotheses in $\textit{VersionSpace}$
Example Version Space

$S: \{<\text{Sunny}, \text{Warm}, ?, \text{Strong}, ?, ?>\}$

Representing Version Spaces

The **General boundary**, G, of version space $V_{S_{H,D}}$ is the set of its maximally general members.

The **Specific boundary**, S, of version space $V_{S_{H,D}}$ is the set of its maximally specific members.

Every member of the version space lies between these boundaries:

$$V_{S_{H,D}} = \{ h \in H | (\exists s \in S)(\exists g \in G)(g \geq h \geq s) \}$$

where $x \geq y$ means x is more general or equal to y.
Candidate Elimination Algorithm

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]
For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
 * Remove \(s \) from \(S \)
 * Add to \(S \) all minimal generalizations \(h \) of \(s \) such that
 1. \(h \) is consistent with \(d \), and
 2. some member of \(G \) is more general than \(h \)
 * Remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)
- If \(d \) is a negative example
- Remove from S any hypothesis inconsistent with d
- For each hypothesis g in G that is not consistent with d
 * Remove g from G
 * Add to G all minimal specializations h of g such that
 1. h is consistent with d, and
 2. some member of S is more specific than h
 * Remove from G any hypothesis that is less general than another hypothesis in G
Example Trace

\[S_0:\{\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing}\]

\[G_0:\{?,?,?,?,?,?\}\]
What Next Training Example?

\[S: \{ \langle \text{Sunny, Warm, ?, Strong, ?, ?} \rangle \} \]

\[G: \{ \langle \text{Sunny, ?, ?, ?, ?, ?} \rangle, \langle ?, \text{Warm, ?, ?, ?, ?} \rangle \} \]
How Should These Be Classified?

\[
S: \{<\text{Sunny}, \text{Warm}, ?, \text{Strong}, ?, ?>\}
\]

\[
\]

\{\text{Sunny Warm Normal Strong Cool Change}\}

\{\text{Rainy Cool Normal Light Warm Same}\}

\{\text{Sunny Warm Normal Light Warm Same}\}
What Justifies this Inductive Leap?

+ \langle Sunny \ Warm \ Normal \ Strong \ Cool \ Change \rangle
+ \langle Sunny \ Warm \ Normal \ Light \ Warm \ Same \rangle

\[S : \langle Sunny \ Warm \ Normal \ ? \ ? \ ? \ ? \rangle \]

Why believe we can classify the unseen

\langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle
An UNBiased Learner

Idea: Choose H that expresses every teachable concept (i.e., H is the power set of X)

Consider $H' = \text{disjunctions, conjunctions, negations over previous } H$. E.g.,

$$\langle \text{Sunny Warm Normal ?? } \rangle \lor \neg \langle ?? ?? ?? ?? \text{ Change} \rangle$$

What are S, G in this case?

$S \leftarrow$

$G \leftarrow$
Inductive Bias

Consider

- concept learning algorithm L
- instances X, target concept c
- training examples $D_c = \{(x, c(x))\}$
- let $L(x_i, D_c)$ denote the classification assigned to the instance x_i by L after training on data D_c.

Definition:

The **inductive bias** of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_c

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$

where $A \vdash B$ means A logically entails B
Inductive Systems and Equivalent Deductive Systems

Inductive system

Training examples

Candidate Elimination Algorithm

Using Hypothesis Space H

New instance

Classification of new instance, or "don't know"

Equivalent deductive system

Training examples

Theorem Prover

New instance

Assertion "H contains the target concept"

Classification of new instance, or "don't know"
Three Learners with Different Biases

1. Rote learner: Store examples, Classify x iff it matches previously observed example.
2. Version space candidate elimination algorithm
3. Find-S
Concept Summary

• Machine Learning formulation and issues
• Hypothesis space search
• Find-S, Version Space/candidate elimination
 – CS4.5
 – S and G boundaries characterize learner uncertainty
• Inductive Bias
 – “leaps” possible only in case of bias existing
Next

- Information Gain
- Noisy data and overfitting
- Evaluation
- Statistical Tools & Techniques